Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cP8_198_2a

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

$\alpha$–N (P213) Structure: A_cP8_198_2a

Picture of Structure; Click for Big Picture
Prototype : $\alpha$–N
AFLOW prototype label : A_cP8_198_2a
Strukturbericht designation : None
Pearson symbol : cP8
Space group number : 198
Space group symbol : $\text{P2}_{1}\text{3}$
AFLOW prototype command : aflow --proto=A_cP8_198_2a
--params=
$a$,$x_{1}$,$x_{2}$


  • There is considerable controversy about the crystal structure of $\alpha$–N, as outlined in (Donohue, 1982) 280-285. This page assumes the non-centrosymmetric P213 structure. The other possibility is the Pa3 structure, where the N2 dimers are not centered on an inversion site. (Venables, 1974) makes a convincing case that the ground state is Pa3, but we present both structures. Density Functional Theory calculations show no appreciable difference in energy between the Pa3 and P213 structures. (Mehl, 2015)

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = &x_{1} \, \mathbf{a}_{1}+ x_{1} \, \mathbf{a}_{2}+ x_{1} \, \mathbf{a}_{3}& = &x_{1} \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}+ x_{1} \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N I} \\ \mathbf{B}_{2} & = &\left(\frac12 - x_{1}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}- x_{1} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N I} \\ \mathbf{B}_{3} & = &- x_{1} \, \mathbf{a}_{1}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{3}& = &- x_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N I} \\ \mathbf{B}_{4} & = &+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}& = &+ \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{y}}- x_{1} \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N I} \\ \mathbf{B}_{5} & = &x_{2} \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &x_{2} \, a \, \mathbf{\hat{x}}+ x_{2} \, a \, \mathbf{\hat{y}}+ x_{2} \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N II} \\ \mathbf{B}_{6} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{x}}- x_{2} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N II} \\ \mathbf{B}_{7} & = &- x_{2} \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &- x_{2} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N II} \\ \mathbf{B}_{8} & = &+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\hat{y}}- x_{2} \, a \, \mathbf{\hat{z}}& \left(4a\right) & \text{N II} \\ \end{array} \]

References

  • S. J. La Placa and W. C Hamilton, Refinement of the crystal structure of alpha–N2, Acta Crystallogr. Sect. B Struct. Sci. 28, 984–985 (1972), doi:10.1107/S0567740872003541.
  • J. Donohue, The Structure of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982).
  • J. A. Venables and C. A. English, Electron diffraction and the structure of alpha–N2, Acta Crystallogr. Sect. B Struct. Sci. 30, 929–935 (1974), doi:10.1107/S0567740874004067.
  • M. J. Mehl, D. Finkenstadt, C. Dane, G. L. W. Hart, and S. Curtarolo, Finding the stable structures of N1–xWx with an textitab initio high–throughput approach, Phys. Rev. B 91, 184110 (2015), doi:10.1103/PhysRevB.91.184110.M. J. Mehl, D. Finkenstadt, C. Dane, G. L. W. Hart, and S. Curtarolo, Finding the stable structures of N1–xWx with an ab initio high–throughput approach, Phys. Rev. B 91, 184110 (2015),

Found in

  • J. Donohue, The Structure of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982)., pp. 280-285.

Geometry files


Prototype Generator

aflow --proto=A_cP8_198_2a --params=

Species:

Running:

Output: