Base–centered orthorhombic Sr4Ru3O10 Structure : A10B3C4_oC68_64_2dfg_ad_2d

Picture of Structure; Click for Big Picture
Prototype : O10Ru3Sr4
AFLOW prototype label : A10B3C4_oC68_64_2dfg_ad_2d
Strukturbericht designation : None
Pearson symbol : oC68
Space group number : 64
Space group symbol : $Cmca$
AFLOW prototype command : aflow --proto=A10B3C4_oC68_64_2dfg_ad_2d
--params=
$a$,$b/a$,$c/a$,$x_{2}$,$x_{3}$,$x_{4}$,$x_{5}$,$x_{6}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$


  • (Crawford, 2002) placed Sr4Ru3O10 in space group $Pbam$ #55, oP68, but found that it was very close to the current structure. Indeed, we derived this structure from the original structure by allowing a small amount of uncertainty in the atomic positions. In both cases, the structure consists of triple–layer ruthenate separated by 2.37 Å. In the original structure, there are two of these layers in the primitive cell which are not equivalent. In the current structure there is only one triple–layer in the primitive base–centered cell, and so the layers in the conventional cell are equivalent.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ru I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ru I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{5} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Ru II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ru II} \\ \mathbf{B}_{13} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Ru II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ru II} \\ \mathbf{B}_{15} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} & = & x_{5}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Sr I} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Sr I} \\ \mathbf{B}_{17} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} & = & -x_{5}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Sr I} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Sr I} \\ \mathbf{B}_{19} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} & = & x_{6}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Sr II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Sr II} \\ \mathbf{B}_{21} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} & = & -x_{6}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Sr II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Sr II} \\ \mathbf{B}_{23} & = & -y_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{26} & = & y_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -y_{7}b \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{27} & = & \left(x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}+y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{8} + y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8} - y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{29} & = & \left(\frac{1}{2} - x_{8} - y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8} + y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{30} & = & \left(x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{31} & = & \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} +x_{8} - y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8} + y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} +x_{8} + y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8} - y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{34} & = & \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \end{array} \]

References

  • M. K. Crawford, R. L. Harlow, W. Marshall, Z. Li, G. Cao, R. L. Lindstrom, Q. Huang, and J. W. Lynn, Structure and magnetism of single crystal Sr4Ru3O10: A ferromagnetic triple–layer ruthenate, Phys. Rev. B 65, 214412 (2002), doi:10.1103/PhysRevB.65.214412.

Geometry files


Prototype Generator

aflow --proto=A10B3C4_oC68_64_2dfg_ad_2d --params=

Species:

Running:

Output: