W3O10 Structure: A10B3_oF52_42_2abce_ab

Picture of Structure; Click for Big Picture
Prototype : W3O10
AFLOW prototype label : A10B3_oF52_42_2abce_ab
Strukturbericht designation : None
Pearson symbol : oF52
Space group number : 42
Space group symbol : $Fmm2$
AFLOW prototype command : aflow --proto=A10B3_oF52_42_2abce_ab
--params=
$a$,$b/a$,$c/a$,$z_{1}$,$z_{2}$,$z_{3}$,$z_{4}$,$z_{5}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$


Face-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & z_{2} \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & z_{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O II} \\ \mathbf{B}_{3} & = & z_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{W I} \\ \mathbf{B}_{4} & = & z_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8b\right) & \mbox{O III} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \mbox{O III} \\ \mathbf{B}_{6} & = & z_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8b\right) & \mbox{W II} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \mbox{W II} \\ \mathbf{B}_{8} & = & \left(y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(y_{6}-z_{6}\right) \, \mathbf{a}_{3} & = & y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O IV} \\ \mathbf{B}_{9} & = & \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(y_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(-y_{6}-z_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{O IV} \\ \mathbf{B}_{10} & = & \left(-x_{7}+y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(x_{7}+y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{O V} \\ \mathbf{B}_{11} & = & \left(x_{7}-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-x_{7}-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{O V} \\ \mathbf{B}_{12} & = & \left(-x_{7}-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}+y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(x_{7}-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{O V} \\ \mathbf{B}_{13} & = & \left(x_{7}+y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-x_{7}+y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{O V} \\ \end{array} \]

References

  • B. Gerand, G. Nowogrocki, and M. Figlarz, A new tungsten trioxide hydrate, WO3textperiodcentered1/3H2O: Preparation, characterization, and crystallographic study, J. Solid State Chem. 38, 312–320 (1981), doi:10.1016/0022-4596(81)90062-1.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A10B3_oF52_42_2abce_ab --params=

Species:

Running:

Output: