Sr4Ti3O10 Structure : A10B4C3_tI34_139_c2eg_2e_ae

Picture of Structure; Click for Big Picture
Prototype : O10Sr4Ti3
AFLOW prototype label : A10B4C3_tI34_139_c2eg_2e_ae
Strukturbericht designation : None
Pearson symbol : tI34
Space group number : 139
Space group symbol : $I4/mmm$
AFLOW prototype command : aflow --proto=A10B4C3_tI34_139_c2eg_2e_ae
--params=
$a$,$c/a$,$z_{3}$,$z_{4}$,$z_{5}$,$z_{6}$,$z_{7}$,$z_{8}$


Other compounds with this structure

  • K2La2Ti3O10, Li2Eu2Ti3O10, Na2Eu2Ti3O10, and Na2Sr2Nb2MnO10

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ti I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{4} & = & z_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{5} & = & -z_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{6} & = & z_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} & = & z_{4}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{7} & = & -z_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} & = & -z_{4}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{8} & = & z_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} & = & z_{5}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr I} \\ \mathbf{B}_{9} & = & -z_{5} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2} & = & -z_{5}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr I} \\ \mathbf{B}_{10} & = & z_{6} \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} & = & z_{6}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr II} \\ \mathbf{B}_{11} & = & -z_{6} \, \mathbf{a}_{1}-z_{6} \, \mathbf{a}_{2} & = & -z_{6}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr II} \\ \mathbf{B}_{12} & = & z_{7} \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2} & = & z_{7}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ti II} \\ \mathbf{B}_{13} & = & -z_{7} \, \mathbf{a}_{1}-z_{7} \, \mathbf{a}_{2} & = & -z_{7}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ti II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{15} & = & z_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + z_{8}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{1}-z_{8} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{17} & = & -z_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{8}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \end{array} \]

References

Found in

Geometry files


Prototype Generator

aflow --proto=A10B4C3_tI34_139_c2eg_2e_ae --params=

Species:

Running:

Output: