C17FeO4Pt Structure: A17BC4D_tP184_89_17p_p_4p_io

Picture of Structure; Click for Big Picture
Prototype : C17FeO4Pt
AFLOW prototype label : A17BC4D_tP184_89_17p_p_4p_io
Strukturbericht designation : None
Pearson symbol : tP184
Space group number : 89
Space group symbol : $P422$
AFLOW prototype command : aflow --proto=A17BC4D_tP184_89_17p_p_4p_io
--params=
$a$,$c/a$,$z_{1}$,$x_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$ z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$,$x_{12}$,$y_{12}$,$z_{12}$,$x_{13}$,$y_{13}$,$z_{13}$,$x_{14}$,$y_{14}$,$z_{14}$,$x_{15}$,$y_{15}$,$z_{15}$,$ x_{16}$,$y_{16}$,$z_{16}$,$x_{17}$,$y_{17}$,$z_{17}$,$x_{18}$,$y_{18}$,$z_{18}$,$x_{19}$,$y_{19}$,$z_{19}$,$x_{20}$,$y_{20}$,$z_{20}$,$x_{21}$,$y_{21}$,$z_{21}$,$x_{22}$,$y_{22}$,$ z_{22}$,$x_{23}$,$y_{23}$,$z_{23}$,$x_{24}$,$y_{24}$,$z_{24}$


  • Structures exhibiting space group #89 are quite rare. According to (Hoffmann, 2014), there are only two entries in the Inorganic Crystal Structure Database with space group #89; however, they are incorrectly classified. This structure is listed in the Cambridge Structure Database (ID=863010). Only the non-hydrogen atoms are listed.

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Pt I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + z_{1}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Pt I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Pt I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{1}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Pt I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4o\right) & \mbox{Pt II} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4o\right) & \mbox{Pt II} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(4o\right) & \mbox{Pt II} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(4o\right) & \mbox{Pt II} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{11} & = & -y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{14} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{15} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{16} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C I} \\ \mathbf{B}_{17} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{19} & = & -y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{20} & = & y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{21} & = & -x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{22} & = & x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{23} & = & y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{24} & = & -y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C II} \\ \mathbf{B}_{25} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{26} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{27} & = & -y_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{28} & = & y_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{29} & = & -x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{30} & = & x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{31} & = & y_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{32} & = & -y_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C III} \\ \mathbf{B}_{33} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{34} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{35} & = & -y_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{36} & = & y_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{37} & = & -x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{38} & = & x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{39} & = & y_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{40} & = & -y_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IV} \\ \mathbf{B}_{41} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{42} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{43} & = & -y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{44} & = & y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{45} & = & -x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{46} & = & x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{47} & = & y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{48} & = & -y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C V} \\ \mathbf{B}_{49} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{50} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{51} & = & -y_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{52} & = & y_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{53} & = & -x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{54} & = & x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{55} & = & y_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{56} & = & -y_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VI} \\ \mathbf{B}_{57} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{58} & = & -x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{59} & = & -y_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & -y_{9}a \, \mathbf{\hat{x}} + x_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{60} & = & y_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & y_{9}a \, \mathbf{\hat{x}}-x_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{61} & = & -x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + y_{9}a \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{62} & = & x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-y_{9}a \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{63} & = & y_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & y_{9}a \, \mathbf{\hat{x}} + x_{9}a \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{64} & = & -y_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & -y_{9}a \, \mathbf{\hat{x}}-x_{9}a \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VII} \\ \mathbf{B}_{65} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + y_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{66} & = & -x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}}-y_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{67} & = & -y_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & -y_{10}a \, \mathbf{\hat{x}} + x_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{68} & = & y_{10} \, \mathbf{a}_{1}-x_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & y_{10}a \, \mathbf{\hat{x}}-x_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{69} & = & -x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}} + y_{10}a \, \mathbf{\hat{y}}-z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{70} & = & x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}}-y_{10}a \, \mathbf{\hat{y}}-z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{71} & = & y_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & y_{10}a \, \mathbf{\hat{x}} + x_{10}a \, \mathbf{\hat{y}}-z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{72} & = & -y_{10} \, \mathbf{a}_{1}-x_{10} \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & -y_{10}a \, \mathbf{\hat{x}}-x_{10}a \, \mathbf{\hat{y}}-z_{10}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C VIII} \\ \mathbf{B}_{73} & = & x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{x}} + y_{11}a \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{74} & = & -x_{11} \, \mathbf{a}_{1}-y_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{x}}-y_{11}a \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{75} & = & -y_{11} \, \mathbf{a}_{1} + x_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & -y_{11}a \, \mathbf{\hat{x}} + x_{11}a \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{76} & = & y_{11} \, \mathbf{a}_{1}-x_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & y_{11}a \, \mathbf{\hat{x}}-x_{11}a \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{77} & = & -x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{x}} + y_{11}a \, \mathbf{\hat{y}}-z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{78} & = & x_{11} \, \mathbf{a}_{1}-y_{11} \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{x}}-y_{11}a \, \mathbf{\hat{y}}-z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{79} & = & y_{11} \, \mathbf{a}_{1} + x_{11} \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & y_{11}a \, \mathbf{\hat{x}} + x_{11}a \, \mathbf{\hat{y}}-z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{80} & = & -y_{11} \, \mathbf{a}_{1}-x_{11} \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & -y_{11}a \, \mathbf{\hat{x}}-x_{11}a \, \mathbf{\hat{y}}-z_{11}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C IX} \\ \mathbf{B}_{81} & = & x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}} + y_{12}a \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{82} & = & -x_{12} \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}}-y_{12}a \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{83} & = & -y_{12} \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & -y_{12}a \, \mathbf{\hat{x}} + x_{12}a \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{84} & = & y_{12} \, \mathbf{a}_{1}-x_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & y_{12}a \, \mathbf{\hat{x}}-x_{12}a \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{85} & = & -x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}} + y_{12}a \, \mathbf{\hat{y}}-z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{86} & = & x_{12} \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}}-y_{12}a \, \mathbf{\hat{y}}-z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{87} & = & y_{12} \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & y_{12}a \, \mathbf{\hat{x}} + x_{12}a \, \mathbf{\hat{y}}-z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{88} & = & -y_{12} \, \mathbf{a}_{1}-x_{12} \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & -y_{12}a \, \mathbf{\hat{x}}-x_{12}a \, \mathbf{\hat{y}}-z_{12}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C X} \\ \mathbf{B}_{89} & = & x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}} + y_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{90} & = & -x_{13} \, \mathbf{a}_{1}-y_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}}-y_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{91} & = & -y_{13} \, \mathbf{a}_{1} + x_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & -y_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{92} & = & y_{13} \, \mathbf{a}_{1}-x_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & y_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{93} & = & -x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}} + y_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{94} & = & x_{13} \, \mathbf{a}_{1}-y_{13} \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}}-y_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{95} & = & y_{13} \, \mathbf{a}_{1} + x_{13} \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & y_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{96} & = & -y_{13} \, \mathbf{a}_{1}-x_{13} \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & -y_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XI} \\ \mathbf{B}_{97} & = & x_{14} \, \mathbf{a}_{1} + y_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}} + y_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{98} & = & -x_{14} \, \mathbf{a}_{1}-y_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}}-y_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{99} & = & -y_{14} \, \mathbf{a}_{1} + x_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & -y_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{100} & = & y_{14} \, \mathbf{a}_{1}-x_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & y_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{101} & = & -x_{14} \, \mathbf{a}_{1} + y_{14} \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}} + y_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{102} & = & x_{14} \, \mathbf{a}_{1}-y_{14} \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}}-y_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{103} & = & y_{14} \, \mathbf{a}_{1} + x_{14} \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & y_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{104} & = & -y_{14} \, \mathbf{a}_{1}-x_{14} \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & -y_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XII} \\ \mathbf{B}_{105} & = & x_{15} \, \mathbf{a}_{1} + y_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & x_{15}a \, \mathbf{\hat{x}} + y_{15}a \, \mathbf{\hat{y}} + z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{106} & = & -x_{15} \, \mathbf{a}_{1}-y_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & -x_{15}a \, \mathbf{\hat{x}}-y_{15}a \, \mathbf{\hat{y}} + z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{107} & = & -y_{15} \, \mathbf{a}_{1} + x_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & -y_{15}a \, \mathbf{\hat{x}} + x_{15}a \, \mathbf{\hat{y}} + z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{108} & = & y_{15} \, \mathbf{a}_{1}-x_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & y_{15}a \, \mathbf{\hat{x}}-x_{15}a \, \mathbf{\hat{y}} + z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{109} & = & -x_{15} \, \mathbf{a}_{1} + y_{15} \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & -x_{15}a \, \mathbf{\hat{x}} + y_{15}a \, \mathbf{\hat{y}}-z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{110} & = & x_{15} \, \mathbf{a}_{1}-y_{15} \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & x_{15}a \, \mathbf{\hat{x}}-y_{15}a \, \mathbf{\hat{y}}-z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{111} & = & y_{15} \, \mathbf{a}_{1} + x_{15} \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & y_{15}a \, \mathbf{\hat{x}} + x_{15}a \, \mathbf{\hat{y}}-z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{112} & = & -y_{15} \, \mathbf{a}_{1}-x_{15} \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & -y_{15}a \, \mathbf{\hat{x}}-x_{15}a \, \mathbf{\hat{y}}-z_{15}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIII} \\ \mathbf{B}_{113} & = & x_{16} \, \mathbf{a}_{1} + y_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & x_{16}a \, \mathbf{\hat{x}} + y_{16}a \, \mathbf{\hat{y}} + z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{114} & = & -x_{16} \, \mathbf{a}_{1}-y_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & -x_{16}a \, \mathbf{\hat{x}}-y_{16}a \, \mathbf{\hat{y}} + z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{115} & = & -y_{16} \, \mathbf{a}_{1} + x_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & -y_{16}a \, \mathbf{\hat{x}} + x_{16}a \, \mathbf{\hat{y}} + z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{116} & = & y_{16} \, \mathbf{a}_{1}-x_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & y_{16}a \, \mathbf{\hat{x}}-x_{16}a \, \mathbf{\hat{y}} + z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{117} & = & -x_{16} \, \mathbf{a}_{1} + y_{16} \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & -x_{16}a \, \mathbf{\hat{x}} + y_{16}a \, \mathbf{\hat{y}}-z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{118} & = & x_{16} \, \mathbf{a}_{1}-y_{16} \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & x_{16}a \, \mathbf{\hat{x}}-y_{16}a \, \mathbf{\hat{y}}-z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{119} & = & y_{16} \, \mathbf{a}_{1} + x_{16} \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & y_{16}a \, \mathbf{\hat{x}} + x_{16}a \, \mathbf{\hat{y}}-z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{120} & = & -y_{16} \, \mathbf{a}_{1}-x_{16} \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & -y_{16}a \, \mathbf{\hat{x}}-x_{16}a \, \mathbf{\hat{y}}-z_{16}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XIV} \\ \mathbf{B}_{121} & = & x_{17} \, \mathbf{a}_{1} + y_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & x_{17}a \, \mathbf{\hat{x}} + y_{17}a \, \mathbf{\hat{y}} + z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{122} & = & -x_{17} \, \mathbf{a}_{1}-y_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & -x_{17}a \, \mathbf{\hat{x}}-y_{17}a \, \mathbf{\hat{y}} + z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{123} & = & -y_{17} \, \mathbf{a}_{1} + x_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & -y_{17}a \, \mathbf{\hat{x}} + x_{17}a \, \mathbf{\hat{y}} + z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{124} & = & y_{17} \, \mathbf{a}_{1}-x_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & y_{17}a \, \mathbf{\hat{x}}-x_{17}a \, \mathbf{\hat{y}} + z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{125} & = & -x_{17} \, \mathbf{a}_{1} + y_{17} \, \mathbf{a}_{2}-z_{17} \, \mathbf{a}_{3} & = & -x_{17}a \, \mathbf{\hat{x}} + y_{17}a \, \mathbf{\hat{y}}-z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{126} & = & x_{17} \, \mathbf{a}_{1}-y_{17} \, \mathbf{a}_{2}-z_{17} \, \mathbf{a}_{3} & = & x_{17}a \, \mathbf{\hat{x}}-y_{17}a \, \mathbf{\hat{y}}-z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{127} & = & y_{17} \, \mathbf{a}_{1} + x_{17} \, \mathbf{a}_{2}-z_{17} \, \mathbf{a}_{3} & = & y_{17}a \, \mathbf{\hat{x}} + x_{17}a \, \mathbf{\hat{y}}-z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{128} & = & -y_{17} \, \mathbf{a}_{1}-x_{17} \, \mathbf{a}_{2}-z_{17} \, \mathbf{a}_{3} & = & -y_{17}a \, \mathbf{\hat{x}}-x_{17}a \, \mathbf{\hat{y}}-z_{17}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XV} \\ \mathbf{B}_{129} & = & x_{18} \, \mathbf{a}_{1} + y_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & x_{18}a \, \mathbf{\hat{x}} + y_{18}a \, \mathbf{\hat{y}} + z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{130} & = & -x_{18} \, \mathbf{a}_{1}-y_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & -x_{18}a \, \mathbf{\hat{x}}-y_{18}a \, \mathbf{\hat{y}} + z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{131} & = & -y_{18} \, \mathbf{a}_{1} + x_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & -y_{18}a \, \mathbf{\hat{x}} + x_{18}a \, \mathbf{\hat{y}} + z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{132} & = & y_{18} \, \mathbf{a}_{1}-x_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & y_{18}a \, \mathbf{\hat{x}}-x_{18}a \, \mathbf{\hat{y}} + z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{133} & = & -x_{18} \, \mathbf{a}_{1} + y_{18} \, \mathbf{a}_{2}-z_{18} \, \mathbf{a}_{3} & = & -x_{18}a \, \mathbf{\hat{x}} + y_{18}a \, \mathbf{\hat{y}}-z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{134} & = & x_{18} \, \mathbf{a}_{1}-y_{18} \, \mathbf{a}_{2}-z_{18} \, \mathbf{a}_{3} & = & x_{18}a \, \mathbf{\hat{x}}-y_{18}a \, \mathbf{\hat{y}}-z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{135} & = & y_{18} \, \mathbf{a}_{1} + x_{18} \, \mathbf{a}_{2}-z_{18} \, \mathbf{a}_{3} & = & y_{18}a \, \mathbf{\hat{x}} + x_{18}a \, \mathbf{\hat{y}}-z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{136} & = & -y_{18} \, \mathbf{a}_{1}-x_{18} \, \mathbf{a}_{2}-z_{18} \, \mathbf{a}_{3} & = & -y_{18}a \, \mathbf{\hat{x}}-x_{18}a \, \mathbf{\hat{y}}-z_{18}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVI} \\ \mathbf{B}_{137} & = & x_{19} \, \mathbf{a}_{1} + y_{19} \, \mathbf{a}_{2} + z_{19} \, \mathbf{a}_{3} & = & x_{19}a \, \mathbf{\hat{x}} + y_{19}a \, \mathbf{\hat{y}} + z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{138} & = & -x_{19} \, \mathbf{a}_{1}-y_{19} \, \mathbf{a}_{2} + z_{19} \, \mathbf{a}_{3} & = & -x_{19}a \, \mathbf{\hat{x}}-y_{19}a \, \mathbf{\hat{y}} + z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{139} & = & -y_{19} \, \mathbf{a}_{1} + x_{19} \, \mathbf{a}_{2} + z_{19} \, \mathbf{a}_{3} & = & -y_{19}a \, \mathbf{\hat{x}} + x_{19}a \, \mathbf{\hat{y}} + z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{140} & = & y_{19} \, \mathbf{a}_{1}-x_{19} \, \mathbf{a}_{2} + z_{19} \, \mathbf{a}_{3} & = & y_{19}a \, \mathbf{\hat{x}}-x_{19}a \, \mathbf{\hat{y}} + z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{141} & = & -x_{19} \, \mathbf{a}_{1} + y_{19} \, \mathbf{a}_{2}-z_{19} \, \mathbf{a}_{3} & = & -x_{19}a \, \mathbf{\hat{x}} + y_{19}a \, \mathbf{\hat{y}}-z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{142} & = & x_{19} \, \mathbf{a}_{1}-y_{19} \, \mathbf{a}_{2}-z_{19} \, \mathbf{a}_{3} & = & x_{19}a \, \mathbf{\hat{x}}-y_{19}a \, \mathbf{\hat{y}}-z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{143} & = & y_{19} \, \mathbf{a}_{1} + x_{19} \, \mathbf{a}_{2}-z_{19} \, \mathbf{a}_{3} & = & y_{19}a \, \mathbf{\hat{x}} + x_{19}a \, \mathbf{\hat{y}}-z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{144} & = & -y_{19} \, \mathbf{a}_{1}-x_{19} \, \mathbf{a}_{2}-z_{19} \, \mathbf{a}_{3} & = & -y_{19}a \, \mathbf{\hat{x}}-x_{19}a \, \mathbf{\hat{y}}-z_{19}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{C XVII} \\ \mathbf{B}_{145} & = & x_{20} \, \mathbf{a}_{1} + y_{20} \, \mathbf{a}_{2} + z_{20} \, \mathbf{a}_{3} & = & x_{20}a \, \mathbf{\hat{x}} + y_{20}a \, \mathbf{\hat{y}} + z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{146} & = & -x_{20} \, \mathbf{a}_{1}-y_{20} \, \mathbf{a}_{2} + z_{20} \, \mathbf{a}_{3} & = & -x_{20}a \, \mathbf{\hat{x}}-y_{20}a \, \mathbf{\hat{y}} + z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{147} & = & -y_{20} \, \mathbf{a}_{1} + x_{20} \, \mathbf{a}_{2} + z_{20} \, \mathbf{a}_{3} & = & -y_{20}a \, \mathbf{\hat{x}} + x_{20}a \, \mathbf{\hat{y}} + z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{148} & = & y_{20} \, \mathbf{a}_{1}-x_{20} \, \mathbf{a}_{2} + z_{20} \, \mathbf{a}_{3} & = & y_{20}a \, \mathbf{\hat{x}}-x_{20}a \, \mathbf{\hat{y}} + z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{149} & = & -x_{20} \, \mathbf{a}_{1} + y_{20} \, \mathbf{a}_{2}-z_{20} \, \mathbf{a}_{3} & = & -x_{20}a \, \mathbf{\hat{x}} + y_{20}a \, \mathbf{\hat{y}}-z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{150} & = & x_{20} \, \mathbf{a}_{1}-y_{20} \, \mathbf{a}_{2}-z_{20} \, \mathbf{a}_{3} & = & x_{20}a \, \mathbf{\hat{x}}-y_{20}a \, \mathbf{\hat{y}}-z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{151} & = & y_{20} \, \mathbf{a}_{1} + x_{20} \, \mathbf{a}_{2}-z_{20} \, \mathbf{a}_{3} & = & y_{20}a \, \mathbf{\hat{x}} + x_{20}a \, \mathbf{\hat{y}}-z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{152} & = & -y_{20} \, \mathbf{a}_{1}-x_{20} \, \mathbf{a}_{2}-z_{20} \, \mathbf{a}_{3} & = & -y_{20}a \, \mathbf{\hat{x}}-x_{20}a \, \mathbf{\hat{y}}-z_{20}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{Fe} \\ \mathbf{B}_{153} & = & x_{21} \, \mathbf{a}_{1} + y_{21} \, \mathbf{a}_{2} + z_{21} \, \mathbf{a}_{3} & = & x_{21}a \, \mathbf{\hat{x}} + y_{21}a \, \mathbf{\hat{y}} + z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{154} & = & -x_{21} \, \mathbf{a}_{1}-y_{21} \, \mathbf{a}_{2} + z_{21} \, \mathbf{a}_{3} & = & -x_{21}a \, \mathbf{\hat{x}}-y_{21}a \, \mathbf{\hat{y}} + z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{155} & = & -y_{21} \, \mathbf{a}_{1} + x_{21} \, \mathbf{a}_{2} + z_{21} \, \mathbf{a}_{3} & = & -y_{21}a \, \mathbf{\hat{x}} + x_{21}a \, \mathbf{\hat{y}} + z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{156} & = & y_{21} \, \mathbf{a}_{1}-x_{21} \, \mathbf{a}_{2} + z_{21} \, \mathbf{a}_{3} & = & y_{21}a \, \mathbf{\hat{x}}-x_{21}a \, \mathbf{\hat{y}} + z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{157} & = & -x_{21} \, \mathbf{a}_{1} + y_{21} \, \mathbf{a}_{2}-z_{21} \, \mathbf{a}_{3} & = & -x_{21}a \, \mathbf{\hat{x}} + y_{21}a \, \mathbf{\hat{y}}-z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{158} & = & x_{21} \, \mathbf{a}_{1}-y_{21} \, \mathbf{a}_{2}-z_{21} \, \mathbf{a}_{3} & = & x_{21}a \, \mathbf{\hat{x}}-y_{21}a \, \mathbf{\hat{y}}-z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{159} & = & y_{21} \, \mathbf{a}_{1} + x_{21} \, \mathbf{a}_{2}-z_{21} \, \mathbf{a}_{3} & = & y_{21}a \, \mathbf{\hat{x}} + x_{21}a \, \mathbf{\hat{y}}-z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{160} & = & -y_{21} \, \mathbf{a}_{1}-x_{21} \, \mathbf{a}_{2}-z_{21} \, \mathbf{a}_{3} & = & -y_{21}a \, \mathbf{\hat{x}}-x_{21}a \, \mathbf{\hat{y}}-z_{21}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O I} \\ \mathbf{B}_{161} & = & x_{22} \, \mathbf{a}_{1} + y_{22} \, \mathbf{a}_{2} + z_{22} \, \mathbf{a}_{3} & = & x_{22}a \, \mathbf{\hat{x}} + y_{22}a \, \mathbf{\hat{y}} + z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{162} & = & -x_{22} \, \mathbf{a}_{1}-y_{22} \, \mathbf{a}_{2} + z_{22} \, \mathbf{a}_{3} & = & -x_{22}a \, \mathbf{\hat{x}}-y_{22}a \, \mathbf{\hat{y}} + z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{163} & = & -y_{22} \, \mathbf{a}_{1} + x_{22} \, \mathbf{a}_{2} + z_{22} \, \mathbf{a}_{3} & = & -y_{22}a \, \mathbf{\hat{x}} + x_{22}a \, \mathbf{\hat{y}} + z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{164} & = & y_{22} \, \mathbf{a}_{1}-x_{22} \, \mathbf{a}_{2} + z_{22} \, \mathbf{a}_{3} & = & y_{22}a \, \mathbf{\hat{x}}-x_{22}a \, \mathbf{\hat{y}} + z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{165} & = & -x_{22} \, \mathbf{a}_{1} + y_{22} \, \mathbf{a}_{2}-z_{22} \, \mathbf{a}_{3} & = & -x_{22}a \, \mathbf{\hat{x}} + y_{22}a \, \mathbf{\hat{y}}-z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{166} & = & x_{22} \, \mathbf{a}_{1}-y_{22} \, \mathbf{a}_{2}-z_{22} \, \mathbf{a}_{3} & = & x_{22}a \, \mathbf{\hat{x}}-y_{22}a \, \mathbf{\hat{y}}-z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{167} & = & y_{22} \, \mathbf{a}_{1} + x_{22} \, \mathbf{a}_{2}-z_{22} \, \mathbf{a}_{3} & = & y_{22}a \, \mathbf{\hat{x}} + x_{22}a \, \mathbf{\hat{y}}-z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{168} & = & -y_{22} \, \mathbf{a}_{1}-x_{22} \, \mathbf{a}_{2}-z_{22} \, \mathbf{a}_{3} & = & -y_{22}a \, \mathbf{\hat{x}}-x_{22}a \, \mathbf{\hat{y}}-z_{22}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O II} \\ \mathbf{B}_{169} & = & x_{23} \, \mathbf{a}_{1} + y_{23} \, \mathbf{a}_{2} + z_{23} \, \mathbf{a}_{3} & = & x_{23}a \, \mathbf{\hat{x}} + y_{23}a \, \mathbf{\hat{y}} + z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{170} & = & -x_{23} \, \mathbf{a}_{1}-y_{23} \, \mathbf{a}_{2} + z_{23} \, \mathbf{a}_{3} & = & -x_{23}a \, \mathbf{\hat{x}}-y_{23}a \, \mathbf{\hat{y}} + z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{171} & = & -y_{23} \, \mathbf{a}_{1} + x_{23} \, \mathbf{a}_{2} + z_{23} \, \mathbf{a}_{3} & = & -y_{23}a \, \mathbf{\hat{x}} + x_{23}a \, \mathbf{\hat{y}} + z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{172} & = & y_{23} \, \mathbf{a}_{1}-x_{23} \, \mathbf{a}_{2} + z_{23} \, \mathbf{a}_{3} & = & y_{23}a \, \mathbf{\hat{x}}-x_{23}a \, \mathbf{\hat{y}} + z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{173} & = & -x_{23} \, \mathbf{a}_{1} + y_{23} \, \mathbf{a}_{2}-z_{23} \, \mathbf{a}_{3} & = & -x_{23}a \, \mathbf{\hat{x}} + y_{23}a \, \mathbf{\hat{y}}-z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{174} & = & x_{23} \, \mathbf{a}_{1}-y_{23} \, \mathbf{a}_{2}-z_{23} \, \mathbf{a}_{3} & = & x_{23}a \, \mathbf{\hat{x}}-y_{23}a \, \mathbf{\hat{y}}-z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{175} & = & y_{23} \, \mathbf{a}_{1} + x_{23} \, \mathbf{a}_{2}-z_{23} \, \mathbf{a}_{3} & = & y_{23}a \, \mathbf{\hat{x}} + x_{23}a \, \mathbf{\hat{y}}-z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{176} & = & -y_{23} \, \mathbf{a}_{1}-x_{23} \, \mathbf{a}_{2}-z_{23} \, \mathbf{a}_{3} & = & -y_{23}a \, \mathbf{\hat{x}}-x_{23}a \, \mathbf{\hat{y}}-z_{23}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O III} \\ \mathbf{B}_{177} & = & x_{24} \, \mathbf{a}_{1} + y_{24} \, \mathbf{a}_{2} + z_{24} \, \mathbf{a}_{3} & = & x_{24}a \, \mathbf{\hat{x}} + y_{24}a \, \mathbf{\hat{y}} + z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{178} & = & -x_{24} \, \mathbf{a}_{1}-y_{24} \, \mathbf{a}_{2} + z_{24} \, \mathbf{a}_{3} & = & -x_{24}a \, \mathbf{\hat{x}}-y_{24}a \, \mathbf{\hat{y}} + z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{179} & = & -y_{24} \, \mathbf{a}_{1} + x_{24} \, \mathbf{a}_{2} + z_{24} \, \mathbf{a}_{3} & = & -y_{24}a \, \mathbf{\hat{x}} + x_{24}a \, \mathbf{\hat{y}} + z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{180} & = & y_{24} \, \mathbf{a}_{1}-x_{24} \, \mathbf{a}_{2} + z_{24} \, \mathbf{a}_{3} & = & y_{24}a \, \mathbf{\hat{x}}-x_{24}a \, \mathbf{\hat{y}} + z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{181} & = & -x_{24} \, \mathbf{a}_{1} + y_{24} \, \mathbf{a}_{2}-z_{24} \, \mathbf{a}_{3} & = & -x_{24}a \, \mathbf{\hat{x}} + y_{24}a \, \mathbf{\hat{y}}-z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{182} & = & x_{24} \, \mathbf{a}_{1}-y_{24} \, \mathbf{a}_{2}-z_{24} \, \mathbf{a}_{3} & = & x_{24}a \, \mathbf{\hat{x}}-y_{24}a \, \mathbf{\hat{y}}-z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{183} & = & y_{24} \, \mathbf{a}_{1} + x_{24} \, \mathbf{a}_{2}-z_{24} \, \mathbf{a}_{3} & = & y_{24}a \, \mathbf{\hat{x}} + x_{24}a \, \mathbf{\hat{y}}-z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \mathbf{B}_{184} & = & -y_{24} \, \mathbf{a}_{1}-x_{24} \, \mathbf{a}_{2}-z_{24} \, \mathbf{a}_{3} & = & -y_{24}a \, \mathbf{\hat{x}}-x_{24}a \, \mathbf{\hat{y}}-z_{24}c \, \mathbf{\hat{z}} & \left(8p\right) & \mbox{O IV} \\ \end{array} \]

References

  • S. Tanaka and K. Mashima, Interaction of Ferrocene Moieties Across a Square Pt4 Unit: Synthesis, Characterization, and Electrochemical Properties of Carboxylate–Bridged Bimetallic Pt4Fen (n = 2, 3, and 4) Complexes, Inorg. Chem. 50, 11384–11393 (2011), doi:10.1021/ic201012m.

Found in

  • C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, The Cambridge Structural Database, Acta Crystallogr. Sect. B Struct. Sci. 72, 171–179 (2016), doi:10.1107/S2052520616003954.
  • F. Hoffmann, The Fascination of Crystals and Symmetry (2014). 230 – The space group list project.

Geometry files


Prototype Generator

aflow --proto=A17BC4D_tP184_89_17p_p_4p_io --params=

Species:

Running:

Output: