Th6Mn23 ($D8_{a}$) Structure: A23B6_cF116_225_bd2f_e

Picture of Structure; Click for Big Picture
Prototype : Th6Mn23
AFLOW prototype label : A23B6_cF116_225_bd2f_e
Strukturbericht designation : $D8_{a}$
Pearson symbol : cF116
Space group number : 225
Space group symbol : $Fm\bar{3}m$
AFLOW prototype command : aflow --proto=A23B6_cF116_225_bd2f_e
--params=
$a$,$x_{3}$,$x_{4}$,$x_{5}$


Other compounds with this structure

  • Ba6Mg23, Cu16Mg4Si7, Er6Fe23, Fe10Ge13Ti6, Fe3Zn, Ho6Fe23, Mn6Ni16Si7, Sm6Fe23, Sr6Li23, Tb6Fe23, Th6–xYxMn23, Th6Mn23, Y6Mn23

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Mn I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Mn II} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Mn II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Mn II} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Mn II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(24d\right) & \mbox{Mn II} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Mn II} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{Th} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{Th} \\ \mathbf{B}_{10} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{Th} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{Th} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{Th} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{Th} \\ \mathbf{B}_{14} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{15} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-3x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1}-3x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{17} & = & -3x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + 3x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{19} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{20} & = & -x_{4} \, \mathbf{a}_{1} + 3x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{21} & = & 3x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn III} \\ \mathbf{B}_{22} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{23} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-3x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{24} & = & x_{5} \, \mathbf{a}_{1}-3x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{25} & = & -3x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{26} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + 3x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{27} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{28} & = & -x_{5} \, \mathbf{a}_{1} + 3x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \mathbf{B}_{29} & = & 3x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{Mn IV} \\ \end{array} \]

References

  • J. V. Florio, R. E. Rundle, and A. I. Snow, Compounds of thorium with transition metals. I. The thorium–manganese system, Acta Cryst. 5, 449–457 (1952), doi:10.1107/S0365110X52001337.

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, no. N.R.C. No. 4303 in International Series of Monographs on Metal Physics and Physical Metallurgy (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.

Geometry files


Prototype Generator

aflow --proto=A23B6_cF116_225_bd2f_e --params=

Species:

Running:

Output: