Bischofite (MgCl2·6H2O, $J1_{7}$) Structure : A2B12CD6_mC42_12_i_2i2j_a_ij

Picture of Structure; Click for Big Picture
Prototype : Cl2H12MgO6
AFLOW prototype label : A2B12CD6_mC42_12_i_2i2j_a_ij
Strukturbericht designation : $J1_{7}$
Pearson symbol : mC42
Space group number : 12
Space group symbol : $C2/m$
AFLOW prototype command : aflow --proto=A2B12CD6_mC42_12_i_2i2j_a_ij
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$


Other compounds with this structure

  • MgBr2·6H2O

  • This structure is nearly identical to the one presented in (Gottfried, 1937) as $J1_{7}$, but now includes the positions of the hydrogen atoms.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Mg} \\ \mathbf{B}_{2} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Cl} \\ \mathbf{B}_{3} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Cl} \\ \mathbf{B}_{4} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{H I} \\ \mathbf{B}_{5} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{H I} \\ \mathbf{B}_{6} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{H II} \\ \mathbf{B}_{7} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{H II} \\ \mathbf{B}_{8} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O I} \\ \mathbf{B}_{10} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H III} \\ \mathbf{B}_{11} & = & \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H III} \\ \mathbf{B}_{12} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H III} \\ \mathbf{B}_{13} & = & \left(x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H III} \\ \mathbf{B}_{14} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}+y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H IV} \\ \mathbf{B}_{15} & = & \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H IV} \\ \mathbf{B}_{16} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H IV} \\ \mathbf{B}_{17} & = & \left(x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H IV} \\ \mathbf{B}_{18} & = & \left(x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}+y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{19} & = & \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{21} & = & \left(x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \end{array} \]

References

  • P. A. Agron and W. R. Busing, Magnesium dichloride hexahydrate, MgCl2·6H2O, by neutron diffraction, Acta Crystallogr. C 41, 8–10 (1985), doi:10.1107/S0108270185002591.
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=A2B12CD6_mC42_12_i_2i2j_a_ij --params=

Species:

Running:

Output: