Na2Mo2O7 Structure : A2B2C7_oC88_64_ef_df_3f2g

Picture of Structure; Click for Big Picture
Prototype : Mo2Na2O7
AFLOW prototype label : A2B2C7_oC88_64_ef_df_3f2g
Strukturbericht designation : None
Pearson symbol : oC88
Space group number : 64
Space group symbol : $Cmca$
AFLOW prototype command : aflow --proto=A2B2C7_oC88_64_ef_df_3f2g
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$y_{2}$,$y_{3}$,$z_{3}$,$y_{4}$,$z_{4}$,$y_{5}$,$z_{5}$,$y_{6}$,$z_{6}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$


Other compounds with this structure

  • Na2W2O7

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Na I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Na I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} & = & -x_{1}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Na I} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Na I} \\ \mathbf{B}_{5} & = & \left(\frac{1}{4} - y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Mo I} \\ \mathbf{B}_{6} & = & \left(\frac{1}{4} +y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - y_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Mo I} \\ \mathbf{B}_{7} & = & \left(\frac{3}{4} +y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} - y_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Mo I} \\ \mathbf{B}_{8} & = & \left(\frac{3}{4} - y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Mo I} \\ \mathbf{B}_{9} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Mo II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Mo II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Mo II} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Mo II} \\ \mathbf{B}_{13} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Na II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Na II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Na II} \\ \mathbf{B}_{16} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Na II} \\ \mathbf{B}_{17} & = & -y_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{20} & = & y_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{21} & = & -y_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & y_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -y_{6}b \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & -y_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{28} & = & y_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -y_{7}b \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{29} & = & \left(x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}+y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} - x_{8} + y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8} - y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{31} & = & \left(\frac{1}{2} - x_{8} - y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8} + y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{32} & = & \left(x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{33} & = & \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} +x_{8} - y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8} + y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +x_{8} + y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8} - y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{36} & = & \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O IV} \\ \mathbf{B}_{37} & = & \left(x_{9}-y_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}+y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} - x_{9} + y_{9}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{9} - y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{9}\right)a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - x_{9} - y_{9}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{9} + y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{9}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{9}\right)a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{9}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{40} & = & \left(x_{9}+y_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}-y_{9}\right) \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{41} & = & \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}-y_{9}\right) \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{42} & = & \left(\frac{1}{2} +x_{9} - y_{9}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{9} + y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{9}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{9}\right)a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{9}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} +x_{9} + y_{9}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{9} - y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{9}\right)a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \mathbf{B}_{44} & = & \left(-x_{9}-y_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{O V} \\ \end{array} \]

References

Geometry files


Prototype Generator

aflow --proto=A2B2C7_oC88_64_ef_df_3f2g --params=

Species:

Running:

Output: