Garnet (Co3Al2Si3O12, $S1_{4}$) Structure: A2B3C12D3_cI160_230_a_c_h_d

Picture of Structure; Click for Big Picture
Prototype : Co3Al2Si3O12
AFLOW prototype label : A2B3C12D3_cI160_230_a_c_h_d
Strukturbericht designation : $S1_{4}$
Pearson symbol : cI160
Space group number : 230
Space group symbol : $Ia\bar{3}d$
AFLOW prototype command : aflow --proto=A2B3C12D3_cI160_230_a_c_h_d
--params=
$a$,$x_{4}$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • (Al,Fe)2Ca3(SiO4)3 (hibschite), Al2(Ca,Fe)3(SiO4)3 (almandine), Al2(Mg,Fe)3(SiO4)3 (pyrope), Al2(Mg,Ni)3(SiO4)3, Al2Ca3(SiO4)3 (grossular), Al2Fe3(SiO4)3, Al2Mg3(SiO4)3, Al2Mn3(SiO4)3 (spessartite), Ca2V3(SiO4)3 (goldmanite), Cr2Ca3(SiO4)3 (uvarovite), Fe2Ca3(SiO4)3 (topazolite), Fe2Mn3(GeO4)3, Fe2Mn3(SiO4)3 (calderite), Mn5(SiO4)3, Sc2Ca3(SiO4)3, Si2(Li2Mg)(SiO4)3, Zr2Ca3(Fe2Si)O12 (kerimasite), Al5(GdO4)3, Al5(LuO4)3, Al5(YO4)3, Al5(YbO4)3, Ga5(LuO4)3, Ga5(YO4)3, Ga5(YbO4)3, Fe5(LuO4)3, Fe5(PyO4)3, Fe5(SmO4)3, Fe5(YO4)3, Fe5(YbO4)3, and Ga5(ErO4)3

  • (Ross, 1996) does not explicitly give the positions of the Al and Si atoms, which we take from (Downs, 2003). (Ewald, 1937) orginally gave Ca3Al2(SiO4)3 garnet the Strukturbericht designation $H31$ or $H3_{1}$. It was reclassified as a silicate and given the designation $S1_{4}$ by (Gottfried, 1937). Although the original prototype was Ca3Al2(SiO4)3, we have better data for the isostructural Co3Al2(SiO4)3 and so use it as our example.

Body-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \mbox{Al} \\ \mathbf{B}_{9} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{10} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & - \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{11} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{12} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{13} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{14} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{15} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{16} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{5}{8}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{17} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{18} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{5}{8}a \, \mathbf{\hat{y}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{19} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{20} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{5}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \mbox{Co} \\ \mathbf{B}_{21} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{22} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{23} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{24} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{25} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{26} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{27} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{28} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{29} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{30} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}}- \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{31} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{32} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{Si} \\ \mathbf{B}_{33} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{35} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{37} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{40} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - z_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{41} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{42} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - z_{4}\right)a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{45} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{46} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{47} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{48} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{49} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{50} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{52} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{53} & = & \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{54} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{55} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{56} & = & \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{57} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{58} & = & \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{59} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{60} & = & \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{61} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{62} & = & \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{63} & = & \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{64} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{65} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{66} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{67} & = & \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{68} & = & \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{69} & = & \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -a\left(y_{4}+\frac{1}{4}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{70} & = & \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{71} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}}-a\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{72} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}}-a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{73} & = & \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{74} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}}-a\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{75} & = & \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{76} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{y}}-a\left(y_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{77} & = & \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -a\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{78} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{y}}-a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{79} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{x}}-a\left(y_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \mathbf{B}_{80} & = & \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \mbox{O} \\ \end{array} \]

References

  • C. R. Ross II, H. Keppler, D. Canil, and H. S. C. O'Neill, Structure and crystal–field spectra of Co3Al2(SiO4)3 and (Mg,Ni)3Al2(SiO4)3 garnet, Am. Mineral. 81, 61–66 (1996).
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913–1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A2B3C12D3_cI160_230_a_c_h_d --params=

Species:

Running:

Output: