Al2S3 Structure: A2B3_hP30_170_2a_3a

Picture of Structure; Click for Big Picture
Prototype : Al2S3
AFLOW prototype label : A2B3_hP30_170_2a_3a
Strukturbericht designation : None
Pearson symbol : hP30
Space group number : 170
Space group symbol : $P6_{5}$
AFLOW prototype command : aflow --proto=A2B3_hP30_170_2a_3a
--params=
$a$,$c/a$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$



Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{1}+y_{1}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{1}+y_{1}\right)a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al I} \\ \mathbf{B}_{2} & = & -y_{1} \, \mathbf{a}_{1} + \left(x_{1}-y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{1}-y_{1}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al I} \\ \mathbf{B}_{3} & = & \left(-x_{1}+y_{1}\right) \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(-x_{1}+\frac{1}{2}y_{1}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al I} \\ \mathbf{B}_{4} & = & -x_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{1}+y_{1}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{1}-y_{1}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al I} \\ \mathbf{B}_{5} & = & y_{1} \, \mathbf{a}_{1} + \left(-x_{1}+y_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{6} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{1}+y_{1}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{6} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al I} \\ \mathbf{B}_{6} & = & \left(x_{1}-y_{1}\right) \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \left(\frac{5}{6} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(x_{1}-\frac{1}{2}y_{1}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{1}a \, \mathbf{\hat{y}} + \left(\frac{5}{6} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al I} \\ \mathbf{B}_{7} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{2}+y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{2}+y_{2}\right)a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al II} \\ \mathbf{B}_{8} & = & -y_{2} \, \mathbf{a}_{1} + \left(x_{2}-y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{2}-y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al II} \\ \mathbf{B}_{9} & = & \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(-x_{2}+\frac{1}{2}y_{2}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al II} \\ \mathbf{B}_{10} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{2}+y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{2}-y_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al II} \\ \mathbf{B}_{11} & = & y_{2} \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{6} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{2}+y_{2}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{6} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al II} \\ \mathbf{B}_{12} & = & \left(x_{2}-y_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{5}{6} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(x_{2}-\frac{1}{2}y_{2}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{2}a \, \mathbf{\hat{y}} + \left(\frac{5}{6} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{Al II} \\ \mathbf{B}_{13} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S I} \\ \mathbf{B}_{14} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S I} \\ \mathbf{B}_{15} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S I} \\ \mathbf{B}_{16} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S I} \\ \mathbf{B}_{17} & = & y_{3} \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{6} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{6} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S I} \\ \mathbf{B}_{18} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{5}{6} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{5}{6} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S I} \\ \mathbf{B}_{19} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S II} \\ \mathbf{B}_{20} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S II} \\ \mathbf{B}_{21} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S II} \\ \mathbf{B}_{22} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S II} \\ \mathbf{B}_{23} & = & y_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{6} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{6} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S II} \\ \mathbf{B}_{24} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{5}{6} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \left(\frac{5}{6} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S II} \\ \mathbf{B}_{25} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S III} \\ \mathbf{B}_{26} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S III} \\ \mathbf{B}_{27} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{3} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S III} \\ \mathbf{B}_{28} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S III} \\ \mathbf{B}_{29} & = & y_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{6} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{6} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S III} \\ \mathbf{B}_{30} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{5}{6} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{5}{6} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6a\right) & \mbox{S III} \\ \end{array} \]

References

  • B. Eisenmann, Crystal structure of α–dialuminium trisulfide, Al2S3, Zeitschrift für Kristallographie – Crystalline Materials 198, 307–308 (1992), doi:10.1524/zkri.1992.198.14.307.

Geometry files


Prototype Generator

aflow --proto=A2B3_hP30_170_2a_3a --params=

Species:

Running:

Output: