Ta3S2 Structure: A2B3_oC40_39_2d_2c2d

Picture of Structure; Click for Big Picture
Prototype : Ta3S2
AFLOW prototype label : A2B3_oC40_39_2d_2c2d
Strukturbericht designation : None
Pearson symbol : oC40
Space group number : 39
Space group symbol : $Abm2$
AFLOW prototype command : aflow --proto=A2B3_oC40_39_2d_2c2d
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & \frac12 \, b \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{4} - z_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{1}\right) \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ta I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{3}{4} - z_{1}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{1}\right) \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ta I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{4} - z_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ta II} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{3}{4} - z_{2}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ta II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S I} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S I} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{3} + z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{3}\right)b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S I} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{3} + z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S I} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S II} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S II} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S II} \\ \mathbf{B}_{12} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{S II} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta III} \\ \mathbf{B}_{14} & = & -x_{5} \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta III} \\ \mathbf{B}_{15} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{5} + z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{5}\right)b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta III} \\ \mathbf{B}_{16} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{5} + z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta III} \\ \mathbf{B}_{17} & = & x_{6} \, \mathbf{a}_{1} + \left(y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(y_{6}+z_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta IV} \\ \mathbf{B}_{18} & = & -x_{6} \, \mathbf{a}_{1} + \left(-y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta IV} \\ \mathbf{B}_{19} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6} - z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{6} + z_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{6}\right)b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta IV} \\ \mathbf{B}_{20} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6} - z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{6} + z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Ta IV} \\ \end{array} \]

References

  • S. J. Kim, K. S. Nanjundaswamy, and T. Hughbanks, Single–crystal structure of tantalum sulfide (Ta3S2). Structure and bonding in the Ta6Sn (n = 1, 3, 4, 5?) pentagonal–antiprismatic chain compounds, Inorg. Chem. 30, 159–164 (1991), doi:10.1021/ic00002a004.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A2B3_oC40_39_2d_2c2d --params=

Species:

Running:

Output: