Cubic Cu2OSeO3 Structure : A2B4C_cP56_198_ab_2a2b_2a

Picture of Structure; Click for Big Picture
Prototype : Cu2O4Se
AFLOW prototype label : A2B4C_cP56_198_ab_2a2b_2a
Strukturbericht designation : None
Pearson symbol : cP56
Space group number : 198
Space group symbol : $P2_{1}3$
AFLOW prototype command : aflow --proto=A2B4C_cP56_198_ab_2a2b_2a
--params=
$a$,$x_{1}$,$x_{2}$,$x_{3}$,$x_{4}$,$x_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$



Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + x_{1}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cu I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cu I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cu I} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{y}}-x_{1}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cu I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se I} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se I} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se I} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se II} \\ \mathbf{B}_{19} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Se II} \\ \mathbf{B}_{21} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{23} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{y}}-z_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{25} & = & z_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + y_{6} \, \mathbf{a}_{3} & = & z_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + y_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2}-y_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}}-y_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{28} & = & -z_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{3} & = & -z_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{29} & = & y_{6} \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}} + z_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{30} & = & -y_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{31} & = & \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{1}-z_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{x}}-z_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{Cu II} \\ \mathbf{B}_{33} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{35} & = & -x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{y}}-z_{7}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{37} & = & z_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + y_{7} \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + y_{7}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2}-y_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}}-y_{7}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{40} & = & -z_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{41} & = & y_{7} \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{42} & = & -y_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1}-z_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O III} \\ \mathbf{B}_{45} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}} + z_{8}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{46} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{47} & = & -x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{48} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{y}}-z_{8}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{49} & = & z_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + y_{8} \, \mathbf{a}_{3} & = & z_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + y_{8}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{50} & = & \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2}-y_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}}-y_{8}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{52} & = & -z_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{3} & = & -z_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{53} & = & y_{8} \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}} + z_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{54} & = & -y_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{55} & = & \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \mathbf{B}_{56} & = & \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{1}-z_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{x}}-z_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O IV} \\ \end{array} \]

References

  • H. Effenberger and F. Pertlik, Die Kristallstrukturen der Kupfer(II)–oxo–selenite Cu2O(SeO3) (kubisch und monoklin) und Cu4O(SeO3)3 (monoklin und triklin), Monatshefte\ für Chemie\ – Chemical\ Monthly 117, 887–896 (1986), doi:10.1007/BF00811258.

Found in

  • P. Y. Portnichenko, J. Romhányi, Y. A. Onykiienko, A. Henschel, M. Schmidt, A. S. Cameron, M. A. Surmach, J. A. Lim, J. T. Park, A. Schneidewind, D. L. Abernathy, H. Rosner, J. van den Brink, and D. S. Inosov, Magnon spectrum of the helimagnetic insulator Cu2OSeO3, Nat. Commun. 7, 10725 (2016), doi:10.1038/ncomms10725.

Geometry files


Prototype Generator

aflow --proto=A2B4C_cP56_198_ab_2a2b_2a --params=

Species:

Running:

Output: