Thenardite [Na2SO4 (V), $H1_{7}$] Structure : A2B4C_oF56_70_g_h_a

Picture of Structure; Click for Big Picture
Prototype : Na2O4S
AFLOW prototype label : A2B4C_oF56_70_g_h_a
Strukturbericht designation : $H1_{7}$
Pearson symbol : oF56
Space group number : 70
Space group symbol : $Fddd$
AFLOW prototype command : aflow --proto=A2B4C_oF56_70_g_h_a
--params=
$a$,$b/a$,$c/a$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • Ag2SO4 and Cr2SO4

  • Na2SO4 has eight known anhydrous phases. The thenardite phase is reported to be stable between 32 °C and about 180 °C (Nord, 1973), but the data reported here was taken on synthetic thenardite at 25 °C.

Face-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}b \, \mathbf{\hat{y}} + \frac{1}{8}c \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{S} \\ \mathbf{B}_{2} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{7}{8}a \, \mathbf{\hat{x}} + \frac{7}{8}b \, \mathbf{\hat{y}} + \frac{7}{8}c \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{S} \\ \mathbf{B}_{3} & = & z_{2} \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{2} + \left(\frac{1}{4} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{Na} \\ \mathbf{B}_{4} & = & \left(\frac{1}{4} - z_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - z_{2}\right) \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{Na} \\ \mathbf{B}_{5} & = & -z_{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{Na} \\ \mathbf{B}_{6} & = & \left(\frac{3}{4} +z_{2}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +z_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}b \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(16g\right) & \mbox{Na} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{8} & = & \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{3}\right)b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{9} & = & \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{3}\right)a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{11} & = & \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{12} & = & \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{3}\right)b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{13} & = & \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(32h\right) & \mbox{O} \\ \end{array} \]

References

Geometry files


Prototype Generator

aflow --proto=A2B4C_oF56_70_g_h_a --params=

Species:

Running:

Output: