Mg(ClO4)2·6H2O ($H4_{11}$) Structure : A2B6CD8_oP34_31_2a_2a2b_a_4a2b

Picture of Structure; Click for Big Picture
Prototype : Cl2(H2O)6MgO8
AFLOW prototype label : A2B6CD8_oP34_31_2a_2a2b_a_4a2b
Strukturbericht designation : $H4_{11}$
Pearson symbol : oP34
Space group number : 31
Space group symbol : $Pmn2_{1}$
AFLOW prototype command : aflow --proto=A2B6CD8_oP34_31_2a_2a2b_a_4a2b
--params=
$a$,$b/a$,$c/a$,$y_{1}$,$z_{1}$,$y_{2}$,$z_{2}$,$y_{3}$,$z_{3}$,$y_{4}$,$z_{4}$,$y_{5}$,$z_{5}$,$y_{6}$,$z_{6}$,$y_{7}$,$z_{7}$,$y_{8}$,$z_{8}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$,$x_{12}$,$y_{12}$,$z_{12}$,$x_{13}$,$y_{13}$,$z_{13}$


Other compounds with this structure

  • Co(ClO4)2·6H2O, Fe(ClO4)2·6H2O, Mn(ClO4)2·6H2O, Ni(ClO4)2·6H2O, Zn(ClO4)2·6H2O, Mg(BF4)2·6H2O, Co(BF4)2·6H2O, Fe(BF4)2·6H2O, Mn(BF4)2·6H2O, Ni(BF4)2·6H2O, and Zn(BF4)2·6H2O

  • (Gottfried, 1937) writes $z_{13} = 0.408$ for the coordinate of the (H2O–II) molecule, but West uses $z_{13} = 0$, which gives a symmetric arrangement of water molecules around the chlorine atom. We use West's value here.

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cl I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cl I} \\ \mathbf{B}_{3} & = & y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cl II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cl II} \\ \mathbf{B}_{5} & = & y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{7} & = & y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{9} & = & y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Mg} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Mg} \\ \mathbf{B}_{11} & = & y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O I} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O I} \\ \mathbf{B}_{13} & = & y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O II} \\ \mathbf{B}_{14} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O II} \\ \mathbf{B}_{15} & = & y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O III} \\ \mathbf{B}_{16} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O III} \\ \mathbf{B}_{17} & = & y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O IV} \\ \mathbf{B}_{18} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{O IV} \\ \mathbf{B}_{19} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{10}\right) \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{10}\right)a \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{21} & = & \left(\frac{1}{2} +x_{10}\right) \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{10}\right)a \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{22} & = & -x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{23} & = & x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O IV} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} - x_{11}\right) \, \mathbf{a}_{1}-y_{11} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{11}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{11}\right)a \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{11}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O IV} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} +x_{11}\right) \, \mathbf{a}_{1}-y_{11} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{11}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{11}\right)a \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{11}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O IV} \\ \mathbf{B}_{26} & = & -x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{H$_{2}$O IV} \\ \mathbf{B}_{27} & = & x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O V} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{12}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{12}\right)a \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{12}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O V} \\ \mathbf{B}_{29} & = & \left(\frac{1}{2} +x_{12}\right) \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{12}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{12}\right)a \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{12}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O V} \\ \mathbf{B}_{30} & = & -x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O V} \\ \mathbf{B}_{31} & = & x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}} + y_{13}b \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O VI} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - x_{13}\right) \, \mathbf{a}_{1}-y_{13} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{13}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{13}\right)a \, \mathbf{\hat{x}}-y_{13}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{13}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O VI} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} +x_{13}\right) \, \mathbf{a}_{1}-y_{13} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{13}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{13}\right)a \, \mathbf{\hat{x}}-y_{13}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{13}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O VI} \\ \mathbf{B}_{34} & = & -x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}} + y_{13}b \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O VI} \\ \end{array} \]

References

  • C. D. West, Crystal Structures of Hydrated Compounds II. Structure Type Mg(ClO4)2·6H2O, Zeitschrift für Kristallographie – Crystalline Materials 91, 480–493 (1935), doi:10.1524/zkri.1935.91.1.480.
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • K. Robertson and D. Bish, Stability of phases in the Mg(ClO4)2·$n$H2O system and implications for perchlorate occurrences on Mars, J. Geophys. Res. 116, E07006 (2011), doi:10.1029/2010JE003754.

Geometry files


Prototype Generator

aflow --proto=A2B6CD8_oP34_31_2a_2a2b_a_4a2b --params=

Species:

Running:

Output: