NH4H2PO2 ($F5_{7}$) Structure : A2BC2D_oC24_67_m_a_n_g

Picture of Structure; Click for Big Picture
Prototype : H2(NH4)O2P
AFLOW prototype label : A2BC2D_oC24_67_m_a_n_g
Strukturbericht designation : $F5_{7}$
Pearson symbol : oC24
Space group number : 67
Space group symbol : $Cmma$
AFLOW prototype command : aflow --proto=A2BC2D_oC24_67_m_a_n_g
--params=
$a$,$b/a$,$c/a$,$z_{2}$,$y_{3}$,$z_{3}$,$x_{4}$,$z_{4}$


  • (Zachriasen, 1934) state that the H atoms in the ammonium ion must be along the lines between the nitrogen and oxygen atoms, but give no further information.
  • The positions of the hydogen atoms in the NH4 ions were not determined, so we only provide the position of the nitrogen atoms (labeled as NH4).
  • The data for this structure was presented in the $Acmm$ setting of space group #67. We transformed this to the standard $Cmma$ setting using FINDSYM.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} & \left(4a\right) & \mbox{NH$_{4}$} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}} & \left(4a\right) & \mbox{NH$_{4}$} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{4}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{P} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{P} \\ \mathbf{B}_{5} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{H} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{H} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{H} \\ \mathbf{B}_{8} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8m\right) & \mbox{H} \\ \mathbf{B}_{9} & = & \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}- \frac{1}{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8n\right) & \mbox{O} \\ \mathbf{B}_{10} & = & \left(\frac{3}{4} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}}- \frac{1}{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8n\right) & \mbox{O} \\ \mathbf{B}_{11} & = & \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} - x_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8n\right) & \mbox{O} \\ \mathbf{B}_{12} & = & \left(\frac{1}{4} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8n\right) & \mbox{O} \\ \end{array} \]

References

  • W. H. Zachariasen and R. C. L. Mooney, The Structure of the Hypophosphite Group as Determined from the Crystal Lattice of Ammonium Hypophosphite, J. Chem. Phys. 2, 34–37 (1934), doi:10.1063/1.1749354.

Found in

  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=A2BC2D_oC24_67_m_a_n_g --params=

Species:

Running:

Output: