Pd(NH3)4Cl2·H2O ($H4_{9}$) Structure : A2BC4D_tP16_127_h_d_i_a

Picture of Structure; Click for Big Picture
Prototype : Cl2(H2O)(NH3)4Pd
AFLOW prototype label : A2BC4D_tP16_127_h_d_i_a
Strukturbericht designation : $H4_{9}$
Pearson symbol : tP16
Space group number : 127
Space group symbol : $P4/mbm$
AFLOW prototype command : aflow --proto=A2BC4D_tP16_127_h_d_i_a
--params=
$a$,$c/a$,$x_{3}$,$x_{4}$,$y_{4}$


  • The positions of the hydrogen atoms have not been measured, assuming they are actually fixed. We group them together with the central atoms of their molecules.

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Pd} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(2a\right) & \mbox{Pd} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(2d\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(2d\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{11} & = & -y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{12} & = & y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{NH$_{3}$} \\ \end{array} \]

References

  • B. N. Dickinson, The Crystal Structure of Tetramminopalladous Chloride Pd(NH3)4Cl2·H2O, Zeitschrift für Kristallographie – Crystalline Materials 88, 281–297 (1934), doi:10.1524/zkri.1934.88.1.281.

Geometry files


Prototype Generator

aflow --proto=A2BC4D_tP16_127_h_d_i_a --params=

Species:

Running:

Output: