V4SiSb2 Structure : A2BC4_tI28_140_h_a_k

Picture of Structure; Click for Big Picture
Prototype : Sb2SiV4
AFLOW prototype label : A2BC4_tI28_140_h_a_k
Strukturbericht designation : None
Pearson symbol : tI28
Space group number : 140
Space group symbol : $I4/mcm$
AFLOW prototype command : aflow --proto=A2BC4_tI28_140_h_a_k
--params=
$a$,$c/a$,$x_{2}$,$x_{3}$,$y_{3}$


Other compounds with this structure

  • Ti4CoBi2, Ti4CrBi2, Ti4FeBi2, Ti4MnBi2, and Ti4NiBi2


Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Si} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Si} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Sb} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Sb} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Sb} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Sb} \\ \mathbf{B}_{7} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{V} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{V} \\ \end{array} \]

References

  • P. Wollesen and W. Jeitschko, V4SiSb2, a vanadium silicide antimonide crystallizing with a defect variant of the W5Si3–type structure, J. Alloys\ Compd. 243, 67–69 (1996), doi:10.1016/S0925-8388(96)02397-3.

Geometry files


Prototype Generator

aflow --proto=A2BC4_tI28_140_h_a_k --params=

Species:

Running:

Output: