Hg2O2NaI Structure : A2BCD2_hP18_180_f_c_b_i

Picture of Structure; Click for Big Picture
Prototype : Hg2INaO2
AFLOW prototype label : A2BCD2_hP18_180_f_c_b_i
Strukturbericht designation : None
Pearson symbol : hP18
Space group number : 180
Space group symbol : $P6_{2}22$
AFLOW prototype command : aflow --proto=A2BCD2_hP18_180_f_c_b_i
--params=
$a$,$c/a$,$z_{3}$,$x_{4}$


Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Na} \\ \mathbf{B}_{2} & = & \frac{1}{6} \, \mathbf{a}_{3} & = & \frac{1}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Na} \\ \mathbf{B}_{3} & = & \frac{5}{6} \, \mathbf{a}_{3} & = & \frac{5}{6}c \, \mathbf{\hat{z}} & \left(3b\right) & \mbox{Na} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} & \left(3c\right) & \mbox{I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{2}{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + \frac{2}{3}c \, \mathbf{\hat{z}} & \left(3c\right) & \mbox{I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{3}c \, \mathbf{\hat{z}} & \left(3c\right) & \mbox{I} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6f\right) & \mbox{Hg} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{2}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + \left(\frac{2}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6f\right) & \mbox{Hg} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{3} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{3} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6f\right) & \mbox{Hg} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{2}{3} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + \left(\frac{2}{3}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(6f\right) & \mbox{Hg} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(6f\right) & \mbox{Hg} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{3} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{3}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(6f\right) & \mbox{Hg} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + 2x_{4} \, \mathbf{a}_{2} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} & \left(6i\right) & \mbox{O} \\ \mathbf{B}_{14} & = & -2x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{2}{3} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{2}{3}c \, \mathbf{\hat{z}} & \left(6i\right) & \mbox{O} \\ \mathbf{B}_{15} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{3} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{3}c \, \mathbf{\hat{z}} & \left(6i\right) & \mbox{O} \\ \mathbf{B}_{16} & = & -x_{4} \, \mathbf{a}_{1}-2x_{4} \, \mathbf{a}_{2} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} & \left(6i\right) & \mbox{O} \\ \mathbf{B}_{17} & = & 2x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{2}{3} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{2}{3}c \, \mathbf{\hat{z}} & \left(6i\right) & \mbox{O} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{1}{3} \, \mathbf{a}_{3} & = & \sqrt{3}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{3}c \, \mathbf{\hat{z}} & \left(6i\right) & \mbox{O} \\ \end{array} \]

References

  • K. Aurivillius, Least–Squares Refinement of the Crystal Structures of Orthorhombic HgO and of Hg2O2NaI, Acta Chem. Scand. 18, 1305–1306 (1964), doi:10.3891/acta.chem.scand.18-1305.

Geometry files


Prototype Generator

aflow --proto=A2BCD2_hP18_180_f_c_b_i --params=

Species:

Running:

Output: