Pyrochlore (Na3Co(CO3)2Cl) Structure: A2BCD3E6_cF208_203_e_c_d_f_g

Picture of Structure; Click for Big Picture
Prototype : Na3Co(CO3)2Cl
AFLOW prototype label : A2BCD3E6_cF208_203_e_c_d_f_g
Strukturbericht designation : None
Pearson symbol : cF208
Space group number : 203
Space group symbol : $Fd\bar{3}$
AFLOW prototype command : aflow --proto=A2BCD3E6_cF208_203_e_c_d_f_g
--params=
$a$,$x_{3}$,$x_{4}$,$x_{5}$,$y_{5}$,$z_{5}$


Other compounds with this structure

  • Na3MgCl(CO3)2 (Northupite), Na3MgBr(CO3)2

  • This structure was suggested to us by Prof. Joel Helton, United States Naval Academy. This is a pyrochlore-like antiferromagnet, which we loosely define as a structure with magnetic ions on the corners of corner-sharing tetrahedra.

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(16c\right) & \mbox{Cl} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(16c\right) & \mbox{Cl} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16c\right) & \mbox{Cl} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16c\right) & \mbox{Cl} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Co} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{10} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 3x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{11} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - 3x_{3}\right) \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - 3x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{14} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +3x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{15} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +3x_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +3x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \mbox{C} \\ \mathbf{B}_{17} & = & \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{18} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{19} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{20} & = & \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{21} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{22} & = & \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{4}\right) \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{23} & = & \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{24} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{25} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{26} & = & \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{27} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{28} & = & \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{Na} \\ \mathbf{B}_{29} & = & \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{30} & = & \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{31} & = & \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{5}\right)a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{33} & = & \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + y_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{35} & = & \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{5}\right)a \, \mathbf{\hat{y}} + y_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{36} & = & \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{37} & = & \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{38} & = & \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{5}\right)a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{40} & = & \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{5}\right)a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{41} & = & \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{42} & = & \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{5}\right)a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{43} & = & \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{45} & = & \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-y_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{46} & = & \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{47} & = & \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{y}}-y_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{48} & = & \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{49} & = & \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{50} & = & \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{5}\right)a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \mathbf{B}_{52} & = & \left(-x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{5}\right)a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(96g\right) & \mbox{O} \\ \end{array} \]

References

  • Z. Fu, Y. Zheng, Y. Xiao, S. Bedanta, A. Senyshyn, G. G. Simeoni, Y. Su, U. Rücker, P. Kögerler, and T. Brückel, Coexistence of magnetic order and spin–glass–like phase in the pyrochlore antiferromagnet Na3Co(CO3)2Cl, Phys. Rev. B 87, 214406 (2013), doi:10.1103/PhysRevB.87.214406.

Geometry files


Prototype Generator

aflow --proto=A2BCD3E6_cF208_203_e_c_d_f_g --params=

Species:

Running:

Output: