$D6_{2}$ (Sb2O4) (obsolete) Structure : A2B_cF96_227_abf_cd

Picture of Structure; Click for Big Picture
Prototype : O2Sb
AFLOW prototype label : A2B_cF96_227_abf_cd
Strukturbericht designation : $D6_{2}$
Pearson symbol : cF96
Space group number : 227
Space group symbol : $Fd\bar{3}m$
AFLOW prototype command : aflow --proto=A2B_cF96_227_abf_cd
--params=
$a$,$x_{5}$


  • Shortly after (Gottfried, 1937) gave this compound the Strukturbericht designation $D6_{2}$, (Dihiström, 1937) showed that they were actually determining the structure of Sb3O6OH, making this structure obsolete. Indeed, (Herrman, 1943) formally withdraws this from the Strukturbericht list, saying The type and description [in (Gottfried, 1937)] should be deleted, as the X–rays were not based on the supposed substance. We present it for its historical interest.
  • Modern experiments have determined that SbO2 appears as cervantite ($\alpha$–Sb2O4) or clinocervantite ($\beta$–Sb2O4).

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{7}{8}a \, \mathbf{\hat{x}} + \frac{7}{8}a \, \mathbf{\hat{y}} + \frac{7}{8}a \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(8b\right) & \mbox{O II} \\ \mathbf{B}_{4} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{5}{8}a \, \mathbf{\hat{x}} + \frac{5}{8}a \, \mathbf{\hat{y}} + \frac{5}{8}a \, \mathbf{\hat{z}} & \left(8b\right) & \mbox{O II} \\ \mathbf{B}_{5} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(16c\right) & \mbox{Sb I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(16c\right) & \mbox{Sb I} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16c\right) & \mbox{Sb I} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16c\right) & \mbox{Sb I} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Sb II} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Sb II} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Sb II} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16d\right) & \mbox{Sb II} \\ \mathbf{B}_{13} & = & \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{5}\right)a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{16} & = & \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{18} & = & \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{5}\right) \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{19} & = & \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{5}\right)a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{20} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{21} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +x_{5}\right)a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{22} & = & \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{23} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \mathbf{B}_{24} & = & \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(48f\right) & \mbox{O III} \\ \end{array} \]

References

  • G. Natta and M. Baccaredda, Tetrossido di antimonio e antimoniati, Zeitschrift für Kristallographie – Crystalline Materials 85, 271–296 (1933), doi:10.1524/zkri.1933.85.1.271.
  • K. Dihlström and A. Westgren, Über den Bau des sogenannten Antimontetroxyds und der damit isomorphen Verbindung BiTa2O6F, Z. Anorg. Allg. Chem. 235, 153–160 (1937), doi:10.1002/zaac.19372350121.
  • K. Herrmann, ed., Strukturbericht Band VII 1939 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1943).

Found in

  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=A2B_cF96_227_abf_cd --params=

Species:

Running:

Output: