NbAs2 Structure : A2B_mC12_5_2c_c

Picture of Structure; Click for Big Picture
Prototype : As2Nb
AFLOW prototype label : A2B_mC12_5_2c_c
Strukturbericht designation : None
Pearson symbol : mC12
Space group number : 5
Space group symbol : $C2$
AFLOW prototype command : aflow --proto=A2B_mC12_5_2c_c
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • MoAs2, TaAs2, NbSb2, and TaSb2

  • The zero of the $y$–axis can be chosen arbitrarily in space group $C2$ #5. Here we chose it so that $y_{3} = 1/2$ for the niobium atom.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \left(x_{1}-y_{1}\right) \, \mathbf{a}_{1} + \left(x_{1}+y_{1}\right) \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{As I} \\ \mathbf{B}_{2} & = & \left(-x_{1}-y_{1}\right) \, \mathbf{a}_{1} + \left(-x_{1}+y_{1}\right) \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{As I} \\ \mathbf{B}_{3} & = & \left(x_{2}-y_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}\right) \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{As II} \\ \mathbf{B}_{4} & = & \left(-x_{2}-y_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{As II} \\ \mathbf{B}_{5} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Nb} \\ \mathbf{B}_{6} & = & \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Nb} \\ \end{array} \]

References

Geometry files


Prototype Generator

aflow --proto=A2B_mC12_5_2c_c --params=

Species:

Running:

Output: