H2S (15 GPa) Structure: A2B_mP12_13_2g_ef

Picture of Structure; Click for Big Picture
Prototype : H2S
AFLOW prototype label : A2B_mP12_13_2g_ef
Strukturbericht designation : None
Pearson symbol : mP12
Space group number : 13
Space group symbol : $P2/c$
AFLOW prototype command : aflow --proto=A2B_mP12_13_2g_ef
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{1}$,$y_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


  • This structure was found by first-principles electronic structure calculations and is predicted to be the stable structure of H2S in the range $10 - 30 GPa, which does not agree with the experimental phase diagram (Shimizu, 1995). The data presented here was computed at 15 GPa.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{S I} \\ \mathbf{B}_{2} & = & -y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{S I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}a+\frac{1}{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2f\right) & \mbox{S II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}a+\frac{3}{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2f\right) & \mbox{S II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H I} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H I} \\ \mathbf{B}_{7} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H I} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H I} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H II} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{4}a - z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H II} \\ \mathbf{B}_{11} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H II} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{4}a + z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{H II} \\ \end{array} \]

References

  • Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, J. Chem. Phys. 140, 174712 (2014), doi:10.1063/1.4874158.
  • H. Shimizu, H. Yamaguchi, S. Sasaki, A. Honda, S. Endo, and M. Kobayashi, Pressure–temperature phase diagram of solid hydrogen sulfide determined by Raman spectroscopy, Phys. Rev. B 51, 9391–9394 (1995), doi:10.1103/PhysRevB.51.9391.

Geometry files


Prototype Generator

aflow --proto=A2B_mP12_13_2g_ef --params=

Species:

Running:

Output: