$\delta$–PdCl2 Structure: A2B_mP6_10_mn_bg

Picture of Structure; Click for Big Picture
Prototype : PdCl2
AFLOW prototype label : A2B_mP6_10_mn_bg
Strukturbericht designation : None
Pearson symbol : mP6
Space group number : 10
Space group symbol : $P2/m$
AFLOW prototype command : aflow --proto=A2B_mP6_10_mn_bg
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$


  • (Evers, 2010) use the unique-axis $c$ setting of space group $P2/m$. We have switched this to our standard unique-axis $b$ setting. The data was taken at 793 K.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}b \, \mathbf{\hat{y}} & \left(1b\right) & \mbox{Pd I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(a+c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(1g\right) & \mbox{Pd II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{Cl I} \\ \mathbf{B}_{4} & = & -x_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{Cl I} \\ \mathbf{B}_{5} & = & x_{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{Cl II} \\ \mathbf{B}_{6} & = & -x_{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{Cl II} \\ \end{array} \]

References

  • J. Evers, W. Beck, M. Göbel, S. Jakob, P. Mayer, G. Oehlinger, M. Rotter, and T. M. Klapötke, The Structures of δ–PdCl2 and γ–PdCl2: Phases with Negative Thermal Expansion in One Direction, Angew. Chem. Int. Ed. 49, 5677–5682 (2010), doi:10.1002/anie.201000680.

Geometry files


Prototype Generator

aflow --proto=A2B_mP6_10_mn_bg --params=

Species:

Running:

Output: