$\gamma$–PdCl2 Structure: A2B_mP6_14_e_a

Picture of Structure; Click for Big Picture
Prototype : PdCl2
AFLOW prototype label : A2B_mP6_14_e_a
Strukturbericht designation : None
Pearson symbol : mP6
Space group number : 14
Space group symbol : $P2_{1}/c$
AFLOW prototype command : aflow --proto=A2B_mP6_14_e_a
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{2}$,$y_{2}$,$z_{2}$


  • (Evers, 2010) place the Pd atoms on the (2c) Wyckoff position. We have shifted the origin so that the Pd atoms are at the (2a) position. Data was taken at 300 K.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Pd} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Pd} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{2}a - z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl} \\ \mathbf{B}_{5} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl} \\ \mathbf{B}_{6} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{2}a + z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl} \\ \end{array} \]

References

  • J. Evers, W. Beck, M. Göbel, S. Jakob, P. Mayer, G. Oehlinger, M. Rotter, and T. M. Klapötke, The Structures of δ–PdCl2 and γ–PdCl2: Phases with Negative Thermal Expansion in One Direction, Angew. Chem. Int. Ed. 49, 5677–5682 (2010), doi:10.1002/anie.201000680.

Geometry files


Prototype Generator

aflow --proto=A2B_mP6_14_e_a --params=

Species:

Running:

Output: