$\gamma$–TeO2 Structure : A2B_oP12_18_2c_c

Picture of Structure; Click for Big Picture
Prototype : O2Te
AFLOW prototype label : A2B_oP12_18_2c_c
Strukturbericht designation : None
Pearson symbol : oP12
Space group number : 18
Space group symbol : $P2_{1}2_{1}2$
AFLOW prototype command : aflow --proto=A2B_oP12_18_2c_c
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


  • This is a metastable state of TeO2, similar to $\alpha$–TeO2 paratelluride. (Champarnaud–Mesjard, 2000) labels the atomic positions as being on the ‘($4a$)’ Wyckoff position, but this does not exist for space group $P2_12_12$ #18. The atoms are actually on the general site for this space group, ($4c$).

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{1}\right)b \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{1}\right)b \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O II} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O II} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Te} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Te} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Te} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Te} \\ \end{array} \]

References

  • J. C. Champarnaud–Mesjard, S. Blanchandin, P. Thomas, A. Mirgorodsky, T. Merle–Méjean, and B. Frit, Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: $\gamma$–TeO2, J. Phys. Chem. Solids 61, 1499–1507 (2000), doi:10.1016/S0022-3697(00)00012-3.

Found in

  • M. Ceriotti, F. Pietrucci, and M. Bernasconi, Ab initio study of the vibrational properties of crystalline TeO2: The $\alpha$, $\beta$, and $\gamma$ phases, Phys. Rev. B 73, 104304 (2006), doi:10.1103/PhysRevB.73.104304.

Geometry files


Prototype Generator

aflow --proto=A2B_oP12_18_2c_c --params=

Species:

Running:

Output: