$\alpha$–PdCl2 ($C50$) Structure: A2B_oP6_58_g_a

Picture of Structure; Click for Big Picture
Prototype : PdCl2
AFLOW prototype label : A2B_oP6_58_g_a
Strukturbericht designation : $C50$
Pearson symbol : oP6
Space group number : 58
Space group symbol : $Pnnm$
AFLOW prototype command : aflow --proto=A2B_oP6_58_g_a
--params=
$a$,$b/a$,$c/a$,$x_{2}$,$y_{2}$


  • (Evers, 2010) implicitly places the Pd atoms at the (2b) Wyckoff position. We have shifted the Pd atoms to the (2a) site.

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Pd} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Pd} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Cl} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Cl} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Cl} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{2}\right)b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Cl} \\ \end{array} \]

References

  • J. Evers, W. Beck, M. Göbel, S. Jakob, P. Mayer, G. Oehlinger, M. Rotter, and T. M. Klapötke, The Structures of δ–PdCl2 and γ–PdCl2: Phases with Negative Thermal Expansion in One Direction, Angew. Chem. Int. Ed. 49, 5677–5682 (2010), doi:10.1002/anie.201000680.

Geometry files


Prototype Generator

aflow --proto=A2B_oP6_58_g_a --params=

Species:

Running:

Output: