Chiolite (Na5Al3F14, $K7_{5}$) Structure : A3B14C5_tP44_128_ac_ehi_bg

Picture of Structure; Click for Big Picture
Prototype : Al3F14Na5
AFLOW prototype label : A3B14C5_tP44_128_ac_ehi_bg
Strukturbericht designation : $K7_{5}$
Pearson symbol : tP44
Space group number : 128
Space group symbol : $P4/mnc$
AFLOW prototype command : aflow --proto=A3B14C5_tP44_128_ac_ehi_bg
--params=
$a$,$c/a$,$z_{4}$,$x_{5}$,$x_{6}$,$y_{6}$,$x_{7}$,$y_{7}$,$z_{7}$


Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Al I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Al I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Na I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(2b\right) & \mbox{Na I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{Al II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4c\right) & \mbox{Al II} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Al II} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Al II} \\ \mathbf{B}_{9} & = & z_{4} \, \mathbf{a}_{3} & = & z_{4}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{F I} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{F I} \\ \mathbf{B}_{11} & = & -z_{4} \, \mathbf{a}_{3} & = & -z_{4}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{F I} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{F I} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{14} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{17} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{18} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Na II} \\ \mathbf{B}_{21} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{22} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{23} & = & -y_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{24} & = & y_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{F II} \\ \mathbf{B}_{29} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{30} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{31} & = & -y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{32} & = & y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{37} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{38} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{39} & = & y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{40} & = & -y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{41} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{42} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \mbox{F III} \\ \end{array} \]

References

  • C. Jacoboni, A. Leble, and J. J. Rousseau, Détermination précise de la structure de la chiolite Na5Al3F14 et étude par R.P.E. de Na5Al3F14:Cr3+, J. Solid State Chem. 36, 297–304 (1981), doi:10.1016/0022-4596(81)90440-0.

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A3B14C5_tP44_128_ac_ehi_bg --params=

Species:

Running:

Output: