$S3_{4}$ (II) (Catapleiite, Na2Zr(SiO3)3· H2O) (obsolete) Structure : A3B2C9D3E_hP36_194_g_f_hk_h_a

Picture of Structure; Click for Big Picture
Prototype : (H2O)Na2O9Si3Zr
AFLOW prototype label : A3B2C9D3E_hP36_194_g_f_hk_h_a
Strukturbericht designation : $S3_{4}$ (II)
Pearson symbol : hP36
Space group number : 194
Space group symbol : $P6_{3}/mmc$
AFLOW prototype command : aflow --proto=A3B2C9D3E_hP36_194_g_f_hk_h_a
--params=
$a$,$c/a$,$z_{2}$,$x_{4}$,$x_{5}$,$x_{6}$,$z_{6}$


  • This hexagonal structure has been superseded by the monoclinic structure of (Ilyushin, 1981). We present it here for historical interest.
  • We were unable to procure the original reference, so we use the data provided by (Gottfried, 1937).
  • Four of the ($6g$) sites are randomly occupied by water molecules.
  • (Gottfried, 1937) originally gave the Strukturbericht designation $S3_{4}$ to chabazite, but (Gottfried, 1940) gave it to this structure of catapleiite. We resolve this dilemma by using $S3_{4}$(I) for chabazite and $S3_{4}$(II) for catapleiite.

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Zr} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Zr} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Na} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Na} \\ \mathbf{B}_{5} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Na} \\ \mathbf{B}_{6} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Na} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} & \left(6g\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} & \left(6g\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(6g\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(6g\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(6g\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(6g\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + 2x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & -2x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & -x_{4} \, \mathbf{a}_{1}-2x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & 2x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \sqrt{3}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & x_{5} \, \mathbf{a}_{1} + 2x_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Si} \\ \mathbf{B}_{20} & = & -2x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Si} \\ \mathbf{B}_{21} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Si} \\ \mathbf{B}_{22} & = & -x_{5} \, \mathbf{a}_{1}-2x_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{5}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Si} \\ \mathbf{B}_{23} & = & 2x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{5}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Si} \\ \mathbf{B}_{24} & = & -x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \sqrt{3}x_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Si} \\ \mathbf{B}_{25} & = & x_{6} \, \mathbf{a}_{1} + 2x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{26} & = & -2x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{27} & = & x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{28} & = & -x_{6} \, \mathbf{a}_{1}-2x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{29} & = & 2x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{30} & = & -x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \sqrt{3}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{31} & = & 2x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{32} & = & -x_{6} \, \mathbf{a}_{1}-2x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{33} & = & -x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \sqrt{3}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{34} & = & -2x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{35} & = & x_{6} \, \mathbf{a}_{1} + 2x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \mathbf{B}_{36} & = & x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & -\sqrt{3}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(12k\right) & \mbox{O II} \\ \end{array} \]

References

  • B. Brunowsky, Die Struktur des Katapleits, Acta Physicochim. USSR 5, 863–892 (1936).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • C. Gottfried, ed., Strukturbericht Band V 1937 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1940).

Geometry files


Prototype Generator

aflow --proto=A3B2C9D3E_hP36_194_g_f_hk_h_a --params=

Species:

Running:

Output: