Pu2C3 ($D5_{c}$) Structure: A3B2_cI40_220_d_c

Picture of Structure; Click for Big Picture
Prototype : Pu2C3
AFLOW prototype label : A3B2_cI40_220_d_c
Strukturbericht designation : $D5_{c}$
Pearson symbol : cI40
Space group number : 220
Space group symbol : $\mbox{I}\bar{4}\mbox{3d}$
AFLOW prototype command : aflow --proto=A3B2_cI40_220_d_c
--params=
$a$,$x_{1}$,$x_{2}$


Other compounds with this structure

  • Am2C3, Ce2C3, Dy2C3, Ho2C3, Hf2C3, La2C3, Nd2C3, Pr2C3, Pu2C3, Sm2C3, U2C3, Y2C3, Cs2O3, Ru2Er3, Rb2O3, and Ru2Y3

  • We use the data for 240Pu.

Body-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = &2 x_{1} \, \mathbf{a}_{1}+ 2 x_{1} \, \mathbf{a}_{2}+ 2 x_{1} \, \mathbf{a}_{3}& = &x_{1} \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}+ x_{1} \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{2} & = &\frac12 \, \mathbf{a}_{1}+ \left(\frac12 - 2 x_{1}\right) \, \mathbf{a}_{3}& = &- x_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ x_{1} \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{3} & = &\left(\frac12 - 2 x_{1}\right) \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}- x_{1} \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{4} & = &\left(\frac12 - 2 x_{1}\right) \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &+ x_{1} \, a \, \mathbf{\hat{x}}- x_{1} \, a \, \mathbf{\hat{y}}\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{5} & = &\left(\frac12 + 2 x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 + 2 x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 + 2 x_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{6} & = &\frac12 \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{3}& = &\left(\frac34 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac14 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{7} & = &- 2 x_{1} \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &\left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac34 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac14 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{8} & = &- 2 x_{1} \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\left(\frac14 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac34 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \mbox{Pu} \\ \mathbf{B}_{9} & = &\frac14 \, \mathbf{a}_{1}+ \left(\frac14 + x_{2}\right) \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &x_{2} \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{10} & = &\frac34 \, \mathbf{a}_{1}+ \left(\frac14 - x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &- x_{2} \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{11} & = &x_{2} \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \left(\frac14 + x_{2}\right) \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ x_{2} \, a \, \mathbf{\hat{y}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{12} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \left(\frac14 - x_{2}\right) \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}- x_{2} \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{13} & = &\left(\frac14 + x_{2}\right) \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{y}}+ x_{2} \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{14} & = &\left(\frac14 - x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{y}}- x_{2} \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{15} & = &\left(\frac34 + x_{2}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \left(\frac14 + x_{2}\right) \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{16} & = &\left(\frac34 - x_{2}\right) \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &\frac34 \, a \, \mathbf{\hat{x}}+ \left(\frac14 - x_{2}\right) \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{17} & = &\frac34 \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac34 + x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac14 + x_{2}\right) \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{18} & = &\frac14 \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ \left(\frac34 - x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac14 - x_{2}\right) \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ \frac34 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{19} & = &\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac34 + x_{2}\right) \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{y}}+ \left(\frac14 + x_{2}\right) \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \mathbf{B}_{20} & = &- x_{2} \, \mathbf{a}_{1}+ \left(\frac34 - x_{2}\right) \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac34 \, a \, \mathbf{\hat{y}}+ \left(\frac14 - x_{2}\right) \, a \, \mathbf{\hat{z}}& \left(24d\right) & \mbox{C} \\ \end{array} \]

References

  • J. L. Green, G. P. Arnold, J. A. Leary, and N. G. Nereson, Crystallographic and magnetic ordering studies of plutonium carbides using neutron diffraction, J. Nucl. Mater. 34, 281–289 (1970), doi:10.1016/0022-3115(70)90194-7.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn., pp. 1993.

Geometry files


Prototype Generator

aflow --proto=A3B2_cI40_220_d_c --params=

Species:

Running:

Output: