Sr2Bi3 Structure: A3B2_oP20_52_de_cd

Picture of Structure; Click for Big Picture
Prototype : Sr2Bi3
AFLOW prototype label : A3B2_oP20_52_de_cd
Strukturbericht designation : None
Pearson symbol : oP20
Space group number : 52
Space group symbol : $Pnna$
AFLOW prototype command : aflow --proto=A3B2_oP20_52_de_cd
--params=
$a$,$b/a$,$c/a$,$z_{1}$,$x_{2}$,$x_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Sr I} \\ \mathbf{B}_{2} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Sr I} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Sr I} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Sr I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Bi I} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Bi I} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Bi I} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Bi I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Sr II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Sr II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Sr II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Sr II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{17} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \mathbf{B}_{20} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Bi II} \\ \end{array} \]

References

  • F. Merlo and M. L. Fornasini, Crystal structure of some phases and alloying behaviour in alkaline earths, europium and ytterbium pnictides, Mater. Res. Bull. 29, 149–154 (1994), doi:10.1016/0025-5408(94)90135-X.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A3B2_oP20_52_de_cd --params=

Species:

Running:

Output: