Hauyne [(Na0.5Ca0.3K0.2)8(Al6Si6O24)(SO4)1.5, $S6_{9}$] Structure : A3B4C4D4E16F4G3_cP76_218_c_e_e_e_ei_e_d

Picture of Structure; Click for Big Picture
Prototype : Al6Ca2.4K1.6Na4O30S1.5Si6
AFLOW prototype label : A3B4C4D4E16F4G3_cP76_218_c_e_e_e_ei_e_d
Strukturbericht designation : $S6_{9}$
Pearson symbol : cP76
Space group number : 218
Space group symbol : $P\bar{4}3n$
AFLOW prototype command : aflow --proto=A3B4C4D4E16F4G3_cP76_218_c_e_e_e_ei_e_d
--params=
$a$,$x_{3}$,$x_{4}$,$x_{5}$,$x_{6}$,$x_{7}$,$x_{8}$,$y_{8}$,$z_{8}$


  • (Gottfried, 1937) used the work of (Machatschki, 1934) for Strukturbericht label $S6_{9}$. We have used the updated 153 K data of (Hassan, 1991).
  • (Machatschki, 1934) puts the sodium, calcium, and potassium atoms at the same ($8e$) Wyckoff position, with partial occupancies of approximately Na0.75Ca0.25 and a trace of potassium. The sample studied by (Hassan, 1991) was found to have the three atoms at slightly different (8e) positions, with 54% sodium occupation, 30% calcium occupation, and 20% potassium occupation.
  • (Machatschki, 1934) put the sulfur atom at the origin, Wyckoff position ($2a$), and assumed that there were two SO4 molecules per formula unit. (Hassan, 1991) found that there were statistically only 1.5 molecules per formula unit, and that the sulfur atom was slightly displaced from the origin to a ($8e$) site, where each atomic position was occupied only 19% of the time. The corresponding ($8e$) oxygen site (O–I in our notation, O2 in Hassan) is only occupied 75% of the time to maintain the SO4 stoichiometry.
  • We shifted the origin of (Hassan, 1991) so that the resulting atomic positions are close to those reported by (Machatschki, 1934). The later structure can be recovered from the former by moving all of the sodium, calcium, and potassium atoms to the same Wyckoff position, moving the sulfur atom to the origin, Wyckoff position ($2a$), and adjusting the occupation of each site appropriately.
  • The 153K data presented in (Downs, 2003) has errors in the $z$ coordinates of the CaC2 (our Ca) and O2 (our O–I) atoms. In both cases, the $z$ coordinate should be the same as the $x$ and $y$ coordinates.
  • The AFLOW label models the structure as if the sites were fully occupied.

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(6c\right) & \mbox{Al} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(6c\right) & \mbox{Al} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Al} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Al} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Al} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Al} \\ \mathbf{B}_{7} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{Si} \\ \mathbf{B}_{8} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{Si} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} & \left(6d\right) & \mbox{Si} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} & \left(6d\right) & \mbox{Si} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{Si} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{Si} \\ \mathbf{B}_{13} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{14} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{15} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{16} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Ca} \\ \mathbf{B}_{21} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{22} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{23} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{24} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K} \\ \mathbf{B}_{29} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{30} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{31} & = & -x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{32} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Na} \\ \mathbf{B}_{37} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{38} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{39} & = & -x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{40} & = & x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{41} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{42} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{45} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{46} & = & -x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{47} & = & -x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{48} & = & x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{49} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{50} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{52} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{S} \\ \mathbf{B}_{53} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}} + z_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{54} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}} + z_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{55} & = & -x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}}-z_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{56} & = & x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}}-z_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{57} & = & z_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + y_{8} \, \mathbf{a}_{3} & = & z_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + y_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{58} & = & z_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-y_{8} \, \mathbf{a}_{3} & = & z_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}}-y_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{59} & = & -z_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + y_{8} \, \mathbf{a}_{3} & = & -z_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + y_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{60} & = & -z_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2}-y_{8} \, \mathbf{a}_{3} & = & -z_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}}-y_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{61} & = & y_{8} \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}} + z_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{62} & = & -y_{8} \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}} + z_{8}a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{63} & = & y_{8} \, \mathbf{a}_{1}-z_{8} \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}}-z_{8}a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{64} & = & -y_{8} \, \mathbf{a}_{1}-z_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}}-z_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{65} & = & \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{66} & = & \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{67} & = & \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{68} & = & \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{69} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{70} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{71} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{72} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{73} & = & \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{74} & = & \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{75} & = & \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \mathbf{B}_{76} & = & \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(24i\right) & \mbox{O II} \\ \end{array} \]

References

  • F. Machatschki, Kristallstruktur von Nauyn und Nosean, Zbl. Mineral. Geol. und Paläont. A 136–144 (1934).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A3B4C4D4E16F4G3_cP76_218_c_e_e_e_ei_e_d --params=

Species:

Running:

Output: