Ag3[PO4] ($H2_{1}$) Structure: A3B4C_cP16_218_c_e_a

Picture of Structure; Click for Big Picture
Prototype : Ag3[PO4]
AFLOW prototype label : A3B4C_cP16_218_c_e_a
Strukturbericht designation : $H2_{1}$
Pearson symbol : cP16
Space group number : 218
Space group symbol : $P\bar{4}3n$
AFLOW prototype command : aflow --proto=A3B4C_cP16_218_c_e_a
--params=
$a$,$x_{3}$


Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(6c\right) & \mbox{Ag} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(6c\right) & \mbox{Ag} \\ \mathbf{B}_{5} & = & \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Ag} \\ \mathbf{B}_{6} & = & \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Ag} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Ag} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Ag} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O} \\ \end{array} \]

References

  • R. Masse, I. Tordjman, and A. Durif, Affinement de la structure cristalline du monophosphate d'argent Ag3PO4. Existence d'une forme haute temperature, Zeitschrift für Kristallographie – Crystalline Materials 144, 76–81 (1976), doi:10.1524/zkri.1976.144.1-6.76.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A3B4C_cP16_218_c_e_a --params=

Species:

Running:

Output: