Cs3P7 Structure: A3B7_tP40_76_3a_7a

Picture of Structure; Click for Big Picture
Prototype : Cs3P7
AFLOW prototype label : A3B7_tP40_76_3a_7a
Strukturbericht designation : None
Pearson symbol : tP40
Space group number : 76
Space group symbol : $P4_{1}$
AFLOW prototype command : aflow --proto=A3B7_tP40_76_3a_7a
--params=
$a$,$c/a$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$ y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$


Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + y_{1}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}}-y_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs I} \\ \mathbf{B}_{3} & = & -y_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs I} \\ \mathbf{B}_{4} & = & y_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{1}\right) \, \mathbf{a}_{3} & = & y_{1}a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs II} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs II} \\ \mathbf{B}_{7} & = & -y_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs II} \\ \mathbf{B}_{8} & = & y_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs II} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs III} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs III} \\ \mathbf{B}_{11} & = & -y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs III} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Cs III} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P I} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P I} \\ \mathbf{B}_{15} & = & -y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P I} \\ \mathbf{B}_{16} & = & y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P I} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P II} \\ \mathbf{B}_{18} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P II} \\ \mathbf{B}_{19} & = & -y_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P II} \\ \mathbf{B}_{20} & = & y_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P II} \\ \mathbf{B}_{21} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P III} \\ \mathbf{B}_{22} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P III} \\ \mathbf{B}_{23} & = & -y_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P III} \\ \mathbf{B}_{24} & = & y_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P III} \\ \mathbf{B}_{25} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P IV} \\ \mathbf{B}_{26} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P IV} \\ \mathbf{B}_{27} & = & -y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P IV} \\ \mathbf{B}_{28} & = & y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P IV} \\ \mathbf{B}_{29} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P V} \\ \mathbf{B}_{30} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P V} \\ \mathbf{B}_{31} & = & -y_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{8}\right) \, \mathbf{a}_{3} & = & -y_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P V} \\ \mathbf{B}_{32} & = & y_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{8}\right) \, \mathbf{a}_{3} & = & y_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P V} \\ \mathbf{B}_{33} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VI} \\ \mathbf{B}_{34} & = & -x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VI} \\ \mathbf{B}_{35} & = & -y_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{9}\right) \, \mathbf{a}_{3} & = & -y_{9}a \, \mathbf{\hat{x}} + x_{9}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VI} \\ \mathbf{B}_{36} & = & y_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{9}\right) \, \mathbf{a}_{3} & = & y_{9}a \, \mathbf{\hat{x}}-x_{9}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VI} \\ \mathbf{B}_{37} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + y_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VII} \\ \mathbf{B}_{38} & = & -x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}}-y_{10}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VII} \\ \mathbf{B}_{39} & = & -y_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{10}\right) \, \mathbf{a}_{3} & = & -y_{10}a \, \mathbf{\hat{x}} + x_{10}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VII} \\ \mathbf{B}_{40} & = & y_{10} \, \mathbf{a}_{1}-x_{10} \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{10}\right) \, \mathbf{a}_{3} & = & y_{10}a \, \mathbf{\hat{x}}-x_{10}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{P VII} \\ \end{array} \]

References

  • T. Meyer, W. Hönle, and H. G. von Schnering, Zur Chemie und Strukturchemie von Phosphiden und Polyphosphiden. 44. Tricäsiumheptaphosphid Cs3P7: Darstellung, Struktur und Eigenschaften, Z. Anorg. Allg. Chem. 552, 69–80 (1987), doi:10.1002/zaac.19875520907.

Found in

  • R. J. D. Tilley, Crystals and Crystal Structures (Wiley, Chichester, England, 2006), chap. 5, p. 102.

Geometry files


Prototype Generator

aflow --proto=A3B7_tP40_76_3a_7a --params=

Species:

Running:

Output: