Cu3P Structure: A3B_hP24_185_ab2c_c

Picture of Structure; Click for Big Picture
Prototype : Cu3P
AFLOW prototype label : A3B_hP24_185_ab2c_c
Strukturbericht designation : None
Pearson symbol : hP24
Space group number : 185
Space group symbol : $P6_{3}cm$
AFLOW prototype command : aflow --proto=A3B_hP24_185_ab2c_c
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$


  • Olofsson (Olofsson, 1972) argues that this is the correct structure for Cu3P rather than the structure which was originally identified as Strukturbericht $D0_{21}$, space group P3c1, A3B_hP24_165_bdg_f. Hafner and Range (Hafner, 1994) state that this is also the correct structure for Na3As, rather than Strukturbericht $D0_{18}$, space group $P6_3/mmc$, AB3_hP8_194_c_bf. Finally, AuMg3, IrMg3 and Mg3Pt, which have been described by both the $D0_{18}$ and $D0_{21}$ structures, are also claimed to actually be in this structure (Range, 1993). Cu3P (A3B_hP24_185_ab2c_c) and Na3As (AB3_hP24_185_c_ab2c) have similar AFLOW prototype labels (i.e., same symmetry and set of Wyckoff positions with different stoichiometry labels due to alphabetic ordering of atomic species). They are generated by the same symmetry operations with different sets of parameters (––params) specified in their corresponding CIF files.

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cu I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cu I} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu II} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu II} \\ \mathbf{B}_{5} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu II} \\ \mathbf{B}_{6} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cu II} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu III} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu III} \\ \mathbf{B}_{9} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu III} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu III} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu III} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu III} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu IV} \\ \mathbf{B}_{14} & = & x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu IV} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu IV} \\ \mathbf{B}_{16} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu IV} \\ \mathbf{B}_{17} & = & -x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu IV} \\ \mathbf{B}_{18} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{Cu IV} \\ \mathbf{B}_{19} & = & x_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{5}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{P} \\ \mathbf{B}_{20} & = & x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{P} \\ \mathbf{B}_{21} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{P} \\ \mathbf{B}_{22} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{P} \\ \mathbf{B}_{23} & = & -x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}x_{5}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{P} \\ \mathbf{B}_{24} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \mbox{P} \\ \end{array} \]

References

  • P. Hafner and K.–J. Range, Na3As revisited: high–pressure synthesis of single crystals and structure refinement, J. Alloys Compd. 216, 7–10 (1994), doi:10.1016/0925-8388(94)91033-2.

Geometry files


Prototype Generator

aflow --proto=A3B_hP24_185_ab2c_c --params=

Species:

Running:

Output: