H3S (60 GPa) Structure: A3B_oC64_66_gi2lm_2l

Picture of Structure; Click for Big Picture
Prototype : H3S
AFLOW prototype label : A3B_oC64_66_gi2lm_2l
Strukturbericht designation : None
Pearson symbol : oC64
Space group number : 66
Space group symbol : $Cccm$
AFLOW prototype command : aflow --proto=A3B_oC64_66_gi2lm_2l
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$z_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$,$x_{5}$,$y_{5}$,$x_{6}$,$y_{6}$,$x_{7}$,$y_{7}$,$z_{7}$


  • This structure was found by first-principles electronic structure calculations and is predicted to be the stable structure of H3S for pressures between 40 and 90 GPa. The data presented here was computed at 60 GPa.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{H I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{H I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{H I} \\ \mathbf{B}_{4} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{H I} \\ \mathbf{B}_{5} & = & z_{2} \, \mathbf{a}_{3} & = & z_{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H II} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H II} \\ \mathbf{B}_{7} & = & -z_{2} \, \mathbf{a}_{3} & = & -z_{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H II} \\ \mathbf{B}_{9} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{H III} \\ \mathbf{B}_{10} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{H III} \\ \mathbf{B}_{11} & = & \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{H III} \\ \mathbf{B}_{12} & = & \left(x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{H III} \\ \mathbf{B}_{13} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{H IV} \\ \mathbf{B}_{14} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{H IV} \\ \mathbf{B}_{15} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{H IV} \\ \mathbf{B}_{16} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{H IV} \\ \mathbf{B}_{17} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{2} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{S I} \\ \mathbf{B}_{18} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{2} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{S I} \\ \mathbf{B}_{19} & = & \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{S I} \\ \mathbf{B}_{20} & = & \left(x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{S I} \\ \mathbf{B}_{21} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{2} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{S II} \\ \mathbf{B}_{22} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{2} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} & \left(8l\right) & \mbox{S II} \\ \mathbf{B}_{23} & = & \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{S II} \\ \mathbf{B}_{24} & = & \left(x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8l\right) & \mbox{S II} \\ \mathbf{B}_{25} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}+y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{26} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{27} & = & \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{7}\right)c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{28} & = & \left(x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{7}\right)c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{29} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{30} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}+y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{31} & = & \left(x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \mathbf{B}_{32} & = & \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{H V} \\ \end{array} \]

References

  • D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure–induced metallization of dense (H2S)2H2 with high–Tc superconductivity, Sci. Rep. 4, 6968 (2014), doi:10.1038/srep06968.

Geometry files


Prototype Generator

aflow --proto=A3B_oC64_66_gi2lm_2l --params=

Species:

Running:

Output: