H3S (5 GPa) Structure: A3B_oI32_23_ij2k_k

Picture of Structure; Click for Big Picture
Prototype : H3S
AFLOW prototype label : A3B_oI32_23_ij2k_k
Strukturbericht designation : None
Pearson symbol : oI32
Space group number : 23
Space group symbol : $I222$
AFLOW prototype command : aflow --proto=A3B_oI32_23_ij2k_k
--params=
$a$,$b/a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$


  • This structure is found in H3S in the pressure range 3.5–17 GPa. The data presented here was taken at 5 GPa.

Body-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{2} & = & z_{1}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{H I} \\ \mathbf{B}_{2} & = & -z_{1} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{2} & = & -z_{1}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{H I} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{H II} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{H II} \\ \mathbf{B}_{5} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H III} \\ \mathbf{B}_{6} & = & \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H III} \\ \mathbf{B}_{7} & = & \left(y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H III} \\ \mathbf{B}_{8} & = & \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H III} \\ \mathbf{B}_{9} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H IV} \\ \mathbf{B}_{10} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H IV} \\ \mathbf{B}_{11} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H IV} \\ \mathbf{B}_{12} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{H IV} \\ \mathbf{B}_{13} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \mathbf{B}_{14} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \mathbf{B}_{15} & = & \left(y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \mathbf{B}_{16} & = & \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8k\right) & \mbox{S} \\ \end{array} \]

References

  • T. A. Strobel, P. Ganesh, M. Somayazulu, P. R. C. Kent, and R. J. Hemley, Novel Cooperative Interactions and Structural Ordering in H2S–H2, Phys. Rev. Lett. 107, 255503 (2011), doi:10.1103/PhysRevLett.107.255503.

Geometry files


Prototype Generator

aflow --proto=A3B_oI32_23_ij2k_k --params=

Species:

Running:

Output: