$D0_{10}$ (WO3) ( obsolete) Structure : A3B_oP16_57_a2d_d

Picture of Structure; Click for Big Picture
Prototype : O3W
AFLOW prototype label : A3B_oP16_57_a2d_d
Strukturbericht designation : $D0_{10}$
Pearson symbol : oP16
Space group number : 57
Space group symbol : $Pbcm$
AFLOW prototype command : aflow --proto=A3B_oP16_57_a2d_d
--params=
$a$,$b/a$,$c/a$,$x_{2}$,$y_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$



Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}b \, \mathbf{\hat{y}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O III} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O III} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O III} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O III} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{W} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{W} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{W} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{W} \\ \end{array} \]

References

  • P. M. Woodward, A. W. Sleight, and T. Vogt, Ferroelectric Tungsten Trioxide, J. Solid State Chem. 131, 9–17 (1997), doi:10.1006/jssc.1997.7268.
  • T. Vogt, P. M. Woodward, and B. A. Hunter, The High–Temperature Phases of WO3, J. Solid State Chem. 144, 209–215 (1999), doi:10.1006/jssc.1999.8173.
  • R. Diehl, G. Brandt, and E. Salje, The Crystal Structure of Triclinic WO3, Acta Crystallogr. Sect. B Struct. Sci. 34, 1105–1111 (1978), doi:10.1107/S0567740878005014.
  • H. Bräkken, Die Kristallstrukturen der Trioxyde von Chrom, Molybdän und Wolfram, Zeitschrift für Kristallographie – Crystalline Materials 78, 484–488 (1931), doi:10.1524/zkri.1931.78.1.484.
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem. 29, 429–434 (1979), doi:10.1016/0022-4596(79)90199-3.

Geometry files


Prototype Generator

aflow --proto=A3B_oP16_57_a2d_d --params=

Species:

Running:

Output: