$\epsilon$–NiAl3 ($D0_{20}$) Structure: A3B_oP16_62_cd_c

Picture of Structure; Click for Big Picture
Prototype : NiAl3
AFLOW prototype label : A3B_oP16_62_cd_c
Strukturbericht designation : $D0_{20}$
Pearson symbol : oP16
Space group number : 62
Space group symbol : $Pnma$
AFLOW prototype command : aflow --proto=A3B_oP16_62_cd_c
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Al I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{1}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Al I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Al I} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Al I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ni} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ni} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ni} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Ni} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{15} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{3}\right)b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Al II} \\ \end{array} \]

References

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, no. N.R.C. No. 4303 in International Series of Monographs on Metal Physics and Physical Metallurgy (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.

Geometry files


Prototype Generator

aflow --proto=A3B_oP16_62_cd_c --params=

Species:

Running:

Output: