Sm11Cd45 Structure : A45B11_cF448_216_bd4efg5h_ac2eh

Picture of Structure; Click for Big Picture
Prototype : Cd45Sm11
AFLOW prototype label : A45B11_cF448_216_bd4efg5h_ac2eh
Strukturbericht designation : None
Pearson symbol : cF448
Space group number : 216
Space group symbol : $F\bar{4}3m$
AFLOW prototype command : aflow --proto=A45B11_cF448_216_bd4efg5h_ac2eh
--params=
$a$,$x_{5}$,$x_{6}$,$x_{7}$,$x_{8}$,$x_{9}$,$x_{10}$,$x_{11}$,$x_{12}$,$x_{13}$,$z_{13}$,$x_{14}$,$z_{14}$,$x_{15}$,$z_{15}$,$x_{16}$,$z_{16}$,$x_{17}$,$z_{17}$,$x_{18}$,$z_{18}$


Other compounds with this structure

  • Dy11Cd45, Er11Cd45, Gd11Cd45, Ho11Cd45, Lu11Cd45, Nd11Cd45, Tb11Cd45, Tm11Cd45, Pr11Cd45, Y11Cd45, Ce11Hg45, Nd11Hg45, Pr11Hg45, and Sm11Hg45

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Sm I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cd I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Sm II} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Cd II} \\ \mathbf{B}_{5} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd III} \\ \mathbf{B}_{6} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-3x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd III} \\ \mathbf{B}_{7} & = & x_{5} \, \mathbf{a}_{1}-3x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd III} \\ \mathbf{B}_{8} & = & -3x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd III} \\ \mathbf{B}_{9} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd IV} \\ \mathbf{B}_{10} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-3x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd IV} \\ \mathbf{B}_{11} & = & x_{6} \, \mathbf{a}_{1}-3x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd IV} \\ \mathbf{B}_{12} & = & -3x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd IV} \\ \mathbf{B}_{13} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd V} \\ \mathbf{B}_{14} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2}-3x_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd V} \\ \mathbf{B}_{15} & = & x_{7} \, \mathbf{a}_{1}-3x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd V} \\ \mathbf{B}_{16} & = & -3x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd V} \\ \mathbf{B}_{17} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd VI} \\ \mathbf{B}_{18} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2}-3x_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd VI} \\ \mathbf{B}_{19} & = & x_{8} \, \mathbf{a}_{1}-3x_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd VI} \\ \mathbf{B}_{20} & = & -3x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Cd VI} \\ \mathbf{B}_{21} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + x_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + x_{9}a \, \mathbf{\hat{y}} + x_{9}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm III} \\ \mathbf{B}_{22} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2}-3x_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-x_{9}a \, \mathbf{\hat{y}} + x_{9}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm III} \\ \mathbf{B}_{23} & = & x_{9} \, \mathbf{a}_{1}-3x_{9} \, \mathbf{a}_{2} + x_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + x_{9}a \, \mathbf{\hat{y}}-x_{9}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm III} \\ \mathbf{B}_{24} & = & -3x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + x_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-x_{9}a \, \mathbf{\hat{y}}-x_{9}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm III} \\ \mathbf{B}_{25} & = & x_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + x_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + x_{10}a \, \mathbf{\hat{y}} + x_{10}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm IV} \\ \mathbf{B}_{26} & = & x_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2}-3x_{10} \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}}-x_{10}a \, \mathbf{\hat{y}} + x_{10}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm IV} \\ \mathbf{B}_{27} & = & x_{10} \, \mathbf{a}_{1}-3x_{10} \, \mathbf{a}_{2} + x_{10} \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}} + x_{10}a \, \mathbf{\hat{y}}-x_{10}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm IV} \\ \mathbf{B}_{28} & = & -3x_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + x_{10} \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}}-x_{10}a \, \mathbf{\hat{y}}-x_{10}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Sm IV} \\ \mathbf{B}_{29} & = & -x_{11} \, \mathbf{a}_{1} + x_{11} \, \mathbf{a}_{2} + x_{11} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{x}} & \left(24f\right) & \mbox{Cd VII} \\ \mathbf{B}_{30} & = & x_{11} \, \mathbf{a}_{1}-x_{11} \, \mathbf{a}_{2}-x_{11} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{x}} & \left(24f\right) & \mbox{Cd VII} \\ \mathbf{B}_{31} & = & x_{11} \, \mathbf{a}_{1}-x_{11} \, \mathbf{a}_{2} + x_{11} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{y}} & \left(24f\right) & \mbox{Cd VII} \\ \mathbf{B}_{32} & = & -x_{11} \, \mathbf{a}_{1} + x_{11} \, \mathbf{a}_{2}-x_{11} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{y}} & \left(24f\right) & \mbox{Cd VII} \\ \mathbf{B}_{33} & = & x_{11} \, \mathbf{a}_{1} + x_{11} \, \mathbf{a}_{2}-x_{11} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{z}} & \left(24f\right) & \mbox{Cd VII} \\ \mathbf{B}_{34} & = & -x_{11} \, \mathbf{a}_{1}-x_{11} \, \mathbf{a}_{2} + x_{11} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{z}} & \left(24f\right) & \mbox{Cd VII} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2} + x_{12} \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{Cd VIII} \\ \mathbf{B}_{36} & = & x_{12} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{12}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{Cd VIII} \\ \mathbf{B}_{37} & = & x_{12} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{2} + x_{12} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + x_{12}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{Cd VIII} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{12}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{Cd VIII} \\ \mathbf{B}_{39} & = & x_{12} \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + x_{12}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{Cd VIII} \\ \mathbf{B}_{40} & = & \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{12}\right) \, \mathbf{a}_{2} + x_{12} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{12}\right)a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{Cd VIII} \\ \mathbf{B}_{41} & = & z_{13} \, \mathbf{a}_{1} + z_{13} \, \mathbf{a}_{2} + \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}} + z_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{42} & = & z_{13} \, \mathbf{a}_{1} + z_{13} \, \mathbf{a}_{2} + \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}} + z_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{43} & = & \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{1} + \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}}-z_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{44} & = & \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{1} + \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}}-z_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{45} & = & \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{1} + z_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & z_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}} + x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{46} & = & \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{1} + z_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & z_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}}-x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{47} & = & z_{13} \, \mathbf{a}_{1} + \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{2} + \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{3} & = & -z_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}} + x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{48} & = & z_{13} \, \mathbf{a}_{1} + \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{2} + \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{3} & = & -z_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}}-x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{49} & = & z_{13} \, \mathbf{a}_{1} + \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}} + z_{13}a \, \mathbf{\hat{y}} + x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{50} & = & z_{13} \, \mathbf{a}_{1} + \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}} + z_{13}a \, \mathbf{\hat{y}}-x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{51} & = & \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{1} + z_{13} \, \mathbf{a}_{2} + \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}}-z_{13}a \, \mathbf{\hat{y}}-x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{52} & = & \left(2x_{13}-z_{13}\right) \, \mathbf{a}_{1} + z_{13} \, \mathbf{a}_{2} + \left(-2x_{13}-z_{13}\right) \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}}-z_{13}a \, \mathbf{\hat{y}} + x_{13}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd IX} \\ \mathbf{B}_{53} & = & z_{14} \, \mathbf{a}_{1} + z_{14} \, \mathbf{a}_{2} + \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}} + z_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{54} & = & z_{14} \, \mathbf{a}_{1} + z_{14} \, \mathbf{a}_{2} + \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}} + z_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{55} & = & \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{1} + \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}}-z_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{56} & = & \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{1} + \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}}-z_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{57} & = & \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{1} + z_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & z_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}} + x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{58} & = & \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{1} + z_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & z_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}}-x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{59} & = & z_{14} \, \mathbf{a}_{1} + \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{2} + \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{3} & = & -z_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}} + x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{60} & = & z_{14} \, \mathbf{a}_{1} + \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{2} + \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{3} & = & -z_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}}-x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{61} & = & z_{14} \, \mathbf{a}_{1} + \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}} + z_{14}a \, \mathbf{\hat{y}} + x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{62} & = & z_{14} \, \mathbf{a}_{1} + \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}} + z_{14}a \, \mathbf{\hat{y}}-x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{63} & = & \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{1} + z_{14} \, \mathbf{a}_{2} + \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}}-z_{14}a \, \mathbf{\hat{y}}-x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{64} & = & \left(2x_{14}-z_{14}\right) \, \mathbf{a}_{1} + z_{14} \, \mathbf{a}_{2} + \left(-2x_{14}-z_{14}\right) \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}}-z_{14}a \, \mathbf{\hat{y}} + x_{14}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd X} \\ \mathbf{B}_{65} & = & z_{15} \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{3} & = & x_{15}a \, \mathbf{\hat{x}} + x_{15}a \, \mathbf{\hat{y}} + z_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{66} & = & z_{15} \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{3} & = & -x_{15}a \, \mathbf{\hat{x}}-x_{15}a \, \mathbf{\hat{y}} + z_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{67} & = & \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{1} + \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & -x_{15}a \, \mathbf{\hat{x}} + x_{15}a \, \mathbf{\hat{y}}-z_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{68} & = & \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{1} + \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & x_{15}a \, \mathbf{\hat{x}}-x_{15}a \, \mathbf{\hat{y}}-z_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{69} & = & \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & z_{15}a \, \mathbf{\hat{x}} + x_{15}a \, \mathbf{\hat{y}} + x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{70} & = & \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & z_{15}a \, \mathbf{\hat{x}}-x_{15}a \, \mathbf{\hat{y}}-x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{71} & = & z_{15} \, \mathbf{a}_{1} + \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{2} + \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{3} & = & -z_{15}a \, \mathbf{\hat{x}}-x_{15}a \, \mathbf{\hat{y}} + x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{72} & = & z_{15} \, \mathbf{a}_{1} + \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{2} + \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{3} & = & -z_{15}a \, \mathbf{\hat{x}} + x_{15}a \, \mathbf{\hat{y}}-x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{73} & = & z_{15} \, \mathbf{a}_{1} + \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & x_{15}a \, \mathbf{\hat{x}} + z_{15}a \, \mathbf{\hat{y}} + x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{74} & = & z_{15} \, \mathbf{a}_{1} + \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & -x_{15}a \, \mathbf{\hat{x}} + z_{15}a \, \mathbf{\hat{y}}-x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{75} & = & \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{3} & = & x_{15}a \, \mathbf{\hat{x}}-z_{15}a \, \mathbf{\hat{y}}-x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{76} & = & \left(2x_{15}-z_{15}\right) \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + \left(-2x_{15}-z_{15}\right) \, \mathbf{a}_{3} & = & -x_{15}a \, \mathbf{\hat{x}}-z_{15}a \, \mathbf{\hat{y}} + x_{15}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XI} \\ \mathbf{B}_{77} & = & z_{16} \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{3} & = & x_{16}a \, \mathbf{\hat{x}} + x_{16}a \, \mathbf{\hat{y}} + z_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{78} & = & z_{16} \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{3} & = & -x_{16}a \, \mathbf{\hat{x}}-x_{16}a \, \mathbf{\hat{y}} + z_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{79} & = & \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{1} + \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & -x_{16}a \, \mathbf{\hat{x}} + x_{16}a \, \mathbf{\hat{y}}-z_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{80} & = & \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{1} + \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & x_{16}a \, \mathbf{\hat{x}}-x_{16}a \, \mathbf{\hat{y}}-z_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{81} & = & \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & z_{16}a \, \mathbf{\hat{x}} + x_{16}a \, \mathbf{\hat{y}} + x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{82} & = & \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & z_{16}a \, \mathbf{\hat{x}}-x_{16}a \, \mathbf{\hat{y}}-x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{83} & = & z_{16} \, \mathbf{a}_{1} + \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{2} + \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{3} & = & -z_{16}a \, \mathbf{\hat{x}}-x_{16}a \, \mathbf{\hat{y}} + x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{84} & = & z_{16} \, \mathbf{a}_{1} + \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{2} + \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{3} & = & -z_{16}a \, \mathbf{\hat{x}} + x_{16}a \, \mathbf{\hat{y}}-x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{85} & = & z_{16} \, \mathbf{a}_{1} + \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & x_{16}a \, \mathbf{\hat{x}} + z_{16}a \, \mathbf{\hat{y}} + x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{86} & = & z_{16} \, \mathbf{a}_{1} + \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & -x_{16}a \, \mathbf{\hat{x}} + z_{16}a \, \mathbf{\hat{y}}-x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{87} & = & \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{3} & = & x_{16}a \, \mathbf{\hat{x}}-z_{16}a \, \mathbf{\hat{y}}-x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{88} & = & \left(2x_{16}-z_{16}\right) \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + \left(-2x_{16}-z_{16}\right) \, \mathbf{a}_{3} & = & -x_{16}a \, \mathbf{\hat{x}}-z_{16}a \, \mathbf{\hat{y}} + x_{16}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XII} \\ \mathbf{B}_{89} & = & z_{17} \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{3} & = & x_{17}a \, \mathbf{\hat{x}} + x_{17}a \, \mathbf{\hat{y}} + z_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{90} & = & z_{17} \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{3} & = & -x_{17}a \, \mathbf{\hat{x}}-x_{17}a \, \mathbf{\hat{y}} + z_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{91} & = & \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{1} + \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & -x_{17}a \, \mathbf{\hat{x}} + x_{17}a \, \mathbf{\hat{y}}-z_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{92} & = & \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{1} + \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & x_{17}a \, \mathbf{\hat{x}}-x_{17}a \, \mathbf{\hat{y}}-z_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{93} & = & \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & z_{17}a \, \mathbf{\hat{x}} + x_{17}a \, \mathbf{\hat{y}} + x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{94} & = & \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & z_{17}a \, \mathbf{\hat{x}}-x_{17}a \, \mathbf{\hat{y}}-x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{95} & = & z_{17} \, \mathbf{a}_{1} + \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{2} + \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{3} & = & -z_{17}a \, \mathbf{\hat{x}}-x_{17}a \, \mathbf{\hat{y}} + x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{96} & = & z_{17} \, \mathbf{a}_{1} + \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{2} + \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{3} & = & -z_{17}a \, \mathbf{\hat{x}} + x_{17}a \, \mathbf{\hat{y}}-x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{97} & = & z_{17} \, \mathbf{a}_{1} + \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & x_{17}a \, \mathbf{\hat{x}} + z_{17}a \, \mathbf{\hat{y}} + x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{98} & = & z_{17} \, \mathbf{a}_{1} + \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & -x_{17}a \, \mathbf{\hat{x}} + z_{17}a \, \mathbf{\hat{y}}-x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{99} & = & \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{3} & = & x_{17}a \, \mathbf{\hat{x}}-z_{17}a \, \mathbf{\hat{y}}-x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{100} & = & \left(2x_{17}-z_{17}\right) \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + \left(-2x_{17}-z_{17}\right) \, \mathbf{a}_{3} & = & -x_{17}a \, \mathbf{\hat{x}}-z_{17}a \, \mathbf{\hat{y}} + x_{17}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Cd XIII} \\ \mathbf{B}_{101} & = & z_{18} \, \mathbf{a}_{1} + z_{18} \, \mathbf{a}_{2} + \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{3} & = & x_{18}a \, \mathbf{\hat{x}} + x_{18}a \, \mathbf{\hat{y}} + z_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{102} & = & z_{18} \, \mathbf{a}_{1} + z_{18} \, \mathbf{a}_{2} + \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{3} & = & -x_{18}a \, \mathbf{\hat{x}}-x_{18}a \, \mathbf{\hat{y}} + z_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{103} & = & \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{1} + \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & -x_{18}a \, \mathbf{\hat{x}} + x_{18}a \, \mathbf{\hat{y}}-z_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{104} & = & \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{1} + \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & x_{18}a \, \mathbf{\hat{x}}-x_{18}a \, \mathbf{\hat{y}}-z_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{105} & = & \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{1} + z_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & z_{18}a \, \mathbf{\hat{x}} + x_{18}a \, \mathbf{\hat{y}} + x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{106} & = & \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{1} + z_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & z_{18}a \, \mathbf{\hat{x}}-x_{18}a \, \mathbf{\hat{y}}-x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{107} & = & z_{18} \, \mathbf{a}_{1} + \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{2} + \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{3} & = & -z_{18}a \, \mathbf{\hat{x}}-x_{18}a \, \mathbf{\hat{y}} + x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{108} & = & z_{18} \, \mathbf{a}_{1} + \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{2} + \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{3} & = & -z_{18}a \, \mathbf{\hat{x}} + x_{18}a \, \mathbf{\hat{y}}-x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{109} & = & z_{18} \, \mathbf{a}_{1} + \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & x_{18}a \, \mathbf{\hat{x}} + z_{18}a \, \mathbf{\hat{y}} + x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{110} & = & z_{18} \, \mathbf{a}_{1} + \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & -x_{18}a \, \mathbf{\hat{x}} + z_{18}a \, \mathbf{\hat{y}}-x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{111} & = & \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{1} + z_{18} \, \mathbf{a}_{2} + \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{3} & = & x_{18}a \, \mathbf{\hat{x}}-z_{18}a \, \mathbf{\hat{y}}-x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \mathbf{B}_{112} & = & \left(2x_{18}-z_{18}\right) \, \mathbf{a}_{1} + z_{18} \, \mathbf{a}_{2} + \left(-2x_{18}-z_{18}\right) \, \mathbf{a}_{3} & = & -x_{18}a \, \mathbf{\hat{x}}-z_{18}a \, \mathbf{\hat{y}} + x_{18}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{Sm V} \\ \end{array} \]

References

  • M. L. Fornasini, B. Chabot, and E. Parthé, The crystal structure of Sm11Cd45 with $\gamma$–brass and $\alpha$–Mn clusters, Acta Crystallogr. Sect. B Struct. Sci. 34, 2093–2099 (1978), doi:10.1107/S0567740878007505.

Geometry files


Prototype Generator

aflow --proto=A45B11_cF448_216_bd4efg5h_ac2eh --params=

Species:

Running:

Output: