ZrFe4Si2 Structure : A4B2C_tP14_136_i_g_b

Picture of Structure; Click for Big Picture
Prototype : Fe4Si2Zr
AFLOW prototype label : A4B2C_tP14_136_i_g_b
Strukturbericht designation : None
Pearson symbol : tP14
Space group number : 136
Space group symbol : $P4_{2}/mnm$
AFLOW prototype command : aflow --proto=A4B2C_tP14_136_i_g_b
--params=
$a$,$c/a$,$x_{2}$,$x_{3}$,$y_{3}$


Other compounds with this structure

  • BaCd4Pt2, DyFe4Ge2, DyNi4As2, ErFe4Ge2, ErNi4P2, GdNi4As2, GdRe4Si2, HoFe4Ge2, LuFe4Ge2, LuNi4As2, LuRe4Si2, ScFe4P2, ScFe4Si2, ScNi4As2, SmRe4Si2, SrCd4Pt2, TbRe4Si2, TmFe4Ge2, TmRe4Si2, UMn4P2, YFe4Ge2, YNi4As2, YNi4P2, YRe4Si2, YbNi4P2, ZrFe4P2, and ZrNi4As2

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Zr} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(2b\right) & \mbox{Zr} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Si} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Si} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Si} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Si} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{13} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{Fe} \\ \mathbf{B}_{14} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{Fe} \\ \end{array} \]

References

  • Y. P. Yarmolyuk, L. A. Lysenko, and E. I. Gladyshevsky, Crystal Structure of ZrFe4Si2 – A New Structure Type of Ternary Silicides, Dopov. Akad. Nauk\ Ukr. RSR,\ Ser. A 37, 281–284 (1975). In Russian.

Found in

  • P. Schobinger–Papamantellos, J. Rodríguez–Carvajal, G. André, N. P. Duong, K. H. J. Buschow, and P. Tolédano, Simultaneous structural and magnetic transitions in YFe4Ge2 studied by neutron diffraction and magnetic measurements, J. Magn. Magn. Mater. 236, 14–27 (2001), doi:10.1016/S0304-8853(01)00442-5.

Geometry files


Prototype Generator

aflow --proto=A4B2C_tP14_136_i_g_b --params=

Species:

Running:

Output: