$S0_{4}$ (Staurolite, Fe(OH)2Al4Si2O10) (obsolete) Structure : A4BC12D2_oC76_63_eg_c_f3gh_g

Picture of Structure; Click for Big Picture
Prototype : Al4FeO12Si2
AFLOW prototype label : A4BC12D2_oC76_63_eg_c_f3gh_g
Strukturbericht designation : $S0_{4}$
Pearson symbol : oC76
Space group number : 63
Space group symbol : $Cmcm$
AFLOW prototype command : aflow --proto=A4BC12D2_oC76_63_eg_c_f3gh_g
--params=
$a$,$b/a$,$c/a$,$y_{1}$,$x_{2}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$x_{5}$,$y_{5}$,$x_{6}$,$y_{6}$,$x_{7}$,$y_{7}$,$x_{8}$,$y_{8}$,$x_{9}$,$y_{9}$,$z_{9}$


  • This orthorhombic structure of staurolite determined by (Náray–Szabó, 1929) was given the Strukturbericht designation $S0_{4}$ by (Hermann, 1937). (Smith, 1968) showed that the structure is actually monoclinic with $\beta ≈ 90°$, rather than orthorhombic and corrected the chemical composition of the mineral. Accordingly, we have marked this version of the structure as obsolete, but retain it for historical interest.
  • One sixth of the oxygen sites listed here should actually be OH ions, but the positions of the hydrogen atoms were not given in (Náray–Szabó, 1929) and are labeled as O.
  • We take our data from (Hermann, 1937), who presented it in the $Ccmm$ representation of space group #63. We used FINDSYM to transform the structure to the standard $Cmcm$ representation.
  • (Hermann, 1937) also gave this the label $H54 in the index.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} & \left(8e\right) & \mbox{Al I} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Al I} \\ \mathbf{B}_{5} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} & \left(8e\right) & \mbox{Al I} \\ \mathbf{B}_{6} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Al I} \\ \mathbf{B}_{7} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{10} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O I} \\ \mathbf{B}_{11} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Al II} \\ \mathbf{B}_{12} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Al II} \\ \mathbf{B}_{13} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Al II} \\ \mathbf{B}_{14} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Al II} \\ \mathbf{B}_{15} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O II} \\ \mathbf{B}_{16} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O II} \\ \mathbf{B}_{17} & = & \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O II} \\ \mathbf{B}_{18} & = & \left(x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O II} \\ \mathbf{B}_{19} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O III} \\ \mathbf{B}_{20} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O III} \\ \mathbf{B}_{21} & = & \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O III} \\ \mathbf{B}_{22} & = & \left(x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O III} \\ \mathbf{B}_{23} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}+y_{7}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{24} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{25} & = & \left(-x_{7}-y_{7}\right) \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{26} & = & \left(x_{7}+y_{7}\right) \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{O IV} \\ \mathbf{B}_{27} & = & \left(x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}+y_{8}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Si} \\ \mathbf{B}_{28} & = & \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Si} \\ \mathbf{B}_{29} & = & \left(-x_{8}-y_{8}\right) \, \mathbf{a}_{1} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Si} \\ \mathbf{B}_{30} & = & \left(x_{8}+y_{8}\right) \, \mathbf{a}_{1} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Si} \\ \mathbf{B}_{31} & = & \left(x_{9}-y_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}+y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{32} & = & \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}-y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{33} & = & \left(-x_{9}-y_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{9}\right) \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{9}\right)c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{34} & = & \left(x_{9}+y_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}-y_{9}\right) \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{35} & = & \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}-y_{9}\right) \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{36} & = & \left(x_{9}-y_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}+y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{9}\right) \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{9}\right)c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{37} & = & \left(x_{9}+y_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}-y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \mathbf{B}_{38} & = & \left(-x_{9}-y_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(16h\right) & \mbox{O V} \\ \end{array} \]

References

  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • St. Náray–Szabó, The structure of staurolite, Zeitschrift für Kristallographie – Crystalline Materials 71, 103–116 (1929), doi:10.1524/zkri.1929.71.1.103.
  • J. D. H. Donnay and G. Donnay, The staurolite story, Tschermaks\ Min. Petr. Mitt. 31, 1–15 (1983), doi:10.1007/BF01084757.
  • J. V. Smith, The crystal structure of staurolite, Am. Mineral. 53, 1139–1155 (1968).

Geometry files


Prototype Generator

aflow --proto=A4BC12D2_oC76_63_eg_c_f3gh_g --params=

Species:

Running:

Output: