LaFe4P12 Structure : A4BC12_cI34_204_c_a_g

Picture of Structure; Click for Big Picture
Prototype : Fe4LaP12
AFLOW prototype label : A4BC12_cI34_204_c_a_g
Strukturbericht designation : None
Pearson symbol : cI34
Space group number : 204
Space group symbol : $Im\bar{3}$
AFLOW prototype command : aflow --proto=A4BC12_cI34_204_c_a_g
--params=
$a$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • CeFe4P12, EuFe4P12, NdFe4P12, PrFe4P12, SmFe4P12, CeRu4P12, EuRu4P12, LaRu4P12, NdRu4P12, PrRu4P12, SmRu4P12, CeOs4P12, LaOs4P12, NdOs4P12, PrOs4P12, SmOs4P12, CeFe4Sb12, LaFe4Sb12, PrFe4Sb12, SmFe4Sb12, CeRu4Sb12, EuRu4Sb12, LaRu4Sb12, NdRu4Sb12, PrRu4Sb12, SmRu4Sb12, CeOs4Sb12, EuOs4Sb12, LaOs4Sb12, NdOs4Sb12, PrOs4Sb12, and SmOs4Sb12


Body-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{La} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Fe} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Fe} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & - \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Fe} \\ \mathbf{B}_{6} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{7} & = & \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{8} & = & \left(y_{3}-z_{3}\right) \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{9} & = & \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{10} & = & y_{3} \, \mathbf{a}_{1} + \left(y_{3}+z_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{11} & = & -y_{3} \, \mathbf{a}_{1} + \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{13} & = & -y_{3} \, \mathbf{a}_{1} + \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{14} & = & z_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{15} & = & z_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{16} & = & -z_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{P} \\ \mathbf{B}_{17} & = & -z_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{P} \\ \end{array} \]

References

  • W. Jeitschko and D. Braun, LaFe4P12 with filled CoAs3–type structure and isotypic lanthanoid–transition metal polyphosphides, Acta Crystallogr. Sect. B Struct. Sci. 33, 3401–3406 (1977), doi:10.1107/S056774087701108X.

Found in

  • C. R. Rotundu, Novel Heavy Fermion Behavior in Praseodymium–based Materials: Experimental Study of PrOs4Sb12, http://ufdc.ufl.edu/UFE0017620/00001/1j (2007). Ph. D. Thesis, University of Florida.
  • D. J. Braun and W. Jeitschko, Preparation and structural investigations of antimonides with the LaFe4P12 structure, J. Less–Common Met. 72, 147–156 (1980), doi:10.1016/0022-5088(80)90260-X.

Geometry files


Prototype Generator

aflow --proto=A4BC12_cI34_204_c_a_g --params=

Species:

Running:

Output: