K2CuCl4·2H2O ($H4_{1}$) Structure : A4BC4D2E2_tP26_136_fg_a_j_d_e

Picture of Structure; Click for Big Picture
Prototype : Cl4CuH4K2O2
AFLOW prototype label : A4BC4D2E2_tP26_136_fg_a_j_d_e
Strukturbericht designation : $H4_{1}$
Pearson symbol : tP26
Space group number : 136
Space group symbol : $P4_{2}/mnm$
AFLOW prototype command : aflow --proto=A4BC4D2E2_tP26_136_fg_a_j_d_e
--params=
$a$,$c/a$,$z_{3}$,$x_{4}$,$x_{5}$,$x_{6}$,$z_{6}$


Other compounds with this structure

  • Rb2CuCl4 · 2H2O, (NH4)2CuCl4 · 2H2O, and (NH4)2CuBr4 · 2H2O

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cu} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cu} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{7} & = & z_{3} \, \mathbf{a}_{3} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{10} & = & -z_{3} \, \mathbf{a}_{3} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(4f\right) & \mbox{Cl I} \\ \mathbf{B}_{12} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(4f\right) & \mbox{Cl I} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Cl I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Cl I} \\ \mathbf{B}_{15} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Cl II} \\ \mathbf{B}_{16} & = & -x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Cl II} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Cl II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Cl II} \\ \mathbf{B}_{19} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{20} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{21} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{25} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \mathbf{B}_{26} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{H} \\ \end{array} \]

References

  • R. Chidambaram, Q. O. Navarro, A. Garcia, K. Linggoatmodjo, L. Shi–Chien, and I.–H. Suh, Neutron diffraction refinement of the crystal structure of potassium copper chloride dihydrate, K2CuCl4 · 2H2O, Acta Crystallogr. Sect. B Struct. Sci. 26, 827–830 (1970), doi:10.1107/S0567740870003187.

Geometry files


Prototype Generator

aflow --proto=A4BC4D2E2_tP26_136_fg_a_j_d_e --params=

Species:

Running:

Output: