$\gamma$–Fe4N ($L'1_{0}$) Structure : A4B_cP5_221_bc_a

Picture of Structure; Click for Big Picture
Prototype : Fe4N
AFLOW prototype label : A4B_cP5_221_bc_a
Strukturbericht designation : $L'1_{0}$
Pearson symbol : cP5
Space group number : 221
Space group symbol : $Pm\bar{3}m$
AFLOW prototype command : aflow --proto=A4B_cP5_221_bc_a
--params=
$a$



Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{N} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(1b\right) & \mbox{Fe I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(3c\right) & \mbox{Fe II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(3c\right) & \mbox{Fe II} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(3c\right) & \mbox{Fe II} \\ \end{array} \]

References

  • H. Jacobs, R. Rechenbach, and U. Zachwieja, Structure determination of $\gamma'$–Fe4N and $\epsilon$–Fe3N, J. Alloys\ Compd. 227, 10–17 (1995), doi:10.1016/0925-8388(95)01610-4.

Geometry files


Prototype Generator

aflow --proto=A4B_cP5_221_bc_a --params=

Species:

Running:

Output: