NaC5H11O8S Structure : A5B11CD8E_aP26_1_5a_11a_a_8a_a

Picture of Structure; Click for Big Picture
Prototype : C5H11NaO8S
AFLOW prototype label : A5B11CD8E_aP26_1_5a_11a_a_8a_a
Strukturbericht designation : None
Pearson symbol : aP26
Space group number : 1
Space group symbol : $P1$
AFLOW prototype command : aflow --proto=A5B11CD8E_aP26_1_5a_11a_a_8a_a
--params=
$a$,$b/a$,$c/a$,$\alpha$,$\beta$,$\gamma$,$x_{1}$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$,$x_{12}$,$y_{12}$,$z_{12}$,$x_{13}$,$y_{13}$,$z_{13}$,$x_{14}$,$y_{14}$,$z_{14}$,$x_{15}$,$y_{15}$,$z_{15}$,$x_{16}$,$y_{16}$,$z_{16}$,$x_{17}$,$y_{17}$,$z_{17}$,$x_{18}$,$y_{18}$,$z_{18}$,$x_{19}$,$y_{19}$,$z_{19}$,$x_{20}$,$y_{20}$,$z_{20}$,$x_{21}$,$y_{21}$,$z_{21}$,$x_{22}$,$y_{22}$,$z_{22}$,$x_{23}$,$y_{23}$,$z_{23}$,$x_{24}$,$y_{24}$,$z_{24}$,$x_{25}$,$y_{25}$,$z_{25}$,$x_{26}$,$y_{26}$,$z_{26}$


Triclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \cos\gamma \, \mathbf{\hat{x}} + b \sin\gamma \,\mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c_x \mathbf{\hat{x}} + c_y \, \mathbf{\hat{y}} + c_z \, \mathbf{\hat{z}}\\\\ c_x & = & c \, \cos\beta \\ c_y & = & c \, (\cos\alpha -\cos\beta \cos\gamma)/\sin\gamma \\ c_z & = & \sqrt{c^2-c_x^2-c_y^2} \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+y_{1}b\cos\gamma+z_{1}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{1}b\sin\gamma+z_{1}c_{y}\right) \, \mathbf{\hat{y}} + z_{1}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C I} \\ \mathbf{B}_{2} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+y_{2}b\cos\gamma+z_{2}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{2}b\sin\gamma+z_{2}c_{y}\right) \, \mathbf{\hat{y}} + z_{2}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+y_{3}b\cos\gamma+z_{3}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{3}b\sin\gamma+z_{3}c_{y}\right) \, \mathbf{\hat{y}} + z_{3}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C III} \\ \mathbf{B}_{4} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+y_{4}b\cos\gamma+z_{4}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{4}b\sin\gamma+z_{4}c_{y}\right) \, \mathbf{\hat{y}} + z_{4}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C IV} \\ \mathbf{B}_{5} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+y_{5}b\cos\gamma+z_{5}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{5}b\sin\gamma+z_{5}c_{y}\right) \, \mathbf{\hat{y}} + z_{5}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{C V} \\ \mathbf{B}_{6} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+y_{6}b\cos\gamma+z_{6}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{6}b\sin\gamma+z_{6}c_{y}\right) \, \mathbf{\hat{y}} + z_{6}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H I} \\ \mathbf{B}_{7} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+y_{7}b\cos\gamma+z_{7}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{7}b\sin\gamma+z_{7}c_{y}\right) \, \mathbf{\hat{y}} + z_{7}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H II} \\ \mathbf{B}_{8} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+y_{8}b\cos\gamma+z_{8}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{8}b\sin\gamma+z_{8}c_{y}\right) \, \mathbf{\hat{y}} + z_{8}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H III} \\ \mathbf{B}_{9} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+y_{9}b\cos\gamma+z_{9}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{9}b\sin\gamma+z_{9}c_{y}\right) \, \mathbf{\hat{y}} + z_{9}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H IV} \\ \mathbf{B}_{10} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+y_{10}b\cos\gamma+z_{10}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{10}b\sin\gamma+z_{10}c_{y}\right) \, \mathbf{\hat{y}} + z_{10}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H V} \\ \mathbf{B}_{11} & = & x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+y_{11}b\cos\gamma+z_{11}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{11}b\sin\gamma+z_{11}c_{y}\right) \, \mathbf{\hat{y}} + z_{11}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H VI} \\ \mathbf{B}_{12} & = & x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & \left(x_{12}a+y_{12}b\cos\gamma+z_{12}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{12}b\sin\gamma+z_{12}c_{y}\right) \, \mathbf{\hat{y}} + z_{12}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H VII} \\ \mathbf{B}_{13} & = & x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & \left(x_{13}a+y_{13}b\cos\gamma+z_{13}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{13}b\sin\gamma+z_{13}c_{y}\right) \, \mathbf{\hat{y}} + z_{13}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H VIII} \\ \mathbf{B}_{14} & = & x_{14} \, \mathbf{a}_{1} + y_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & \left(x_{14}a+y_{14}b\cos\gamma+z_{14}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{14}b\sin\gamma+z_{14}c_{y}\right) \, \mathbf{\hat{y}} + z_{14}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H IX} \\ \mathbf{B}_{15} & = & x_{15} \, \mathbf{a}_{1} + y_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & \left(x_{15}a+y_{15}b\cos\gamma+z_{15}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{15}b\sin\gamma+z_{15}c_{y}\right) \, \mathbf{\hat{y}} + z_{15}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H X} \\ \mathbf{B}_{16} & = & x_{16} \, \mathbf{a}_{1} + y_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & \left(x_{16}a+y_{16}b\cos\gamma+z_{16}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{16}b\sin\gamma+z_{16}c_{y}\right) \, \mathbf{\hat{y}} + z_{16}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{H XI} \\ \mathbf{B}_{17} & = & x_{17} \, \mathbf{a}_{1} + y_{17} \, \mathbf{a}_{2} + z_{17} \, \mathbf{a}_{3} & = & \left(x_{17}a+y_{17}b\cos\gamma+z_{17}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{17}b\sin\gamma+z_{17}c_{y}\right) \, \mathbf{\hat{y}} + z_{17}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Na} \\ \mathbf{B}_{18} & = & x_{18} \, \mathbf{a}_{1} + y_{18} \, \mathbf{a}_{2} + z_{18} \, \mathbf{a}_{3} & = & \left(x_{18}a+y_{18}b\cos\gamma+z_{18}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{18}b\sin\gamma+z_{18}c_{y}\right) \, \mathbf{\hat{y}} + z_{18}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & x_{19} \, \mathbf{a}_{1} + y_{19} \, \mathbf{a}_{2} + z_{19} \, \mathbf{a}_{3} & = & \left(x_{19}a+y_{19}b\cos\gamma+z_{19}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{19}b\sin\gamma+z_{19}c_{y}\right) \, \mathbf{\hat{y}} + z_{19}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & x_{20} \, \mathbf{a}_{1} + y_{20} \, \mathbf{a}_{2} + z_{20} \, \mathbf{a}_{3} & = & \left(x_{20}a+y_{20}b\cos\gamma+z_{20}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{20}b\sin\gamma+z_{20}c_{y}\right) \, \mathbf{\hat{y}} + z_{20}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O III} \\ \mathbf{B}_{21} & = & x_{21} \, \mathbf{a}_{1} + y_{21} \, \mathbf{a}_{2} + z_{21} \, \mathbf{a}_{3} & = & \left(x_{21}a+y_{21}b\cos\gamma+z_{21}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{21}b\sin\gamma+z_{21}c_{y}\right) \, \mathbf{\hat{y}} + z_{21}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O IV} \\ \mathbf{B}_{22} & = & x_{22} \, \mathbf{a}_{1} + y_{22} \, \mathbf{a}_{2} + z_{22} \, \mathbf{a}_{3} & = & \left(x_{22}a+y_{22}b\cos\gamma+z_{22}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{22}b\sin\gamma+z_{22}c_{y}\right) \, \mathbf{\hat{y}} + z_{22}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O V} \\ \mathbf{B}_{23} & = & x_{23} \, \mathbf{a}_{1} + y_{23} \, \mathbf{a}_{2} + z_{23} \, \mathbf{a}_{3} & = & \left(x_{23}a+y_{23}b\cos\gamma+z_{23}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{23}b\sin\gamma+z_{23}c_{y}\right) \, \mathbf{\hat{y}} + z_{23}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O VI} \\ \mathbf{B}_{24} & = & x_{24} \, \mathbf{a}_{1} + y_{24} \, \mathbf{a}_{2} + z_{24} \, \mathbf{a}_{3} & = & \left(x_{24}a+y_{24}b\cos\gamma+z_{24}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{24}b\sin\gamma+z_{24}c_{y}\right) \, \mathbf{\hat{y}} + z_{24}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O VII} \\ \mathbf{B}_{25} & = & x_{25} \, \mathbf{a}_{1} + y_{25} \, \mathbf{a}_{2} + z_{25} \, \mathbf{a}_{3} & = & \left(x_{25}a+y_{25}b\cos\gamma+z_{25}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{25}b\sin\gamma+z_{25}c_{y}\right) \, \mathbf{\hat{y}} + z_{25}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{O VIII} \\ \mathbf{B}_{26} & = & x_{26} \, \mathbf{a}_{1} + y_{26} \, \mathbf{a}_{2} + z_{26} \, \mathbf{a}_{3} & = & \left(x_{26}a+y_{26}b\cos\gamma+z_{26}c_{x}\right) \, \mathbf{\hat{x}} + \left(y_{26}b\sin\gamma+z_{26}c_{y}\right) \, \mathbf{\hat{y}} + z_{26}c_{z} \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{S} \\ \end{array} \]

References

  • A. H. Haines and D. L. Hughes, Crystal structure of sodium (1S)–D–lyxit–1–yl sulfonate, Acta Crystallogr. E 72, 628–631 (2016), doi:10.1107/S2056989016005375.

Geometry files


Prototype Generator

aflow --proto=A5B11CD8E_aP26_1_5a_11a_a_8a_a --params=

Species:

Running:

Output: