Ir3Ga5 Structure: A5B3_tP32_118_g2i_aceh

Picture of Structure; Click for Big Picture
Prototype : Ir3Ga5
AFLOW prototype label : A5B3_tP32_118_g2i_aceh
Strukturbericht designation : None
Pearson symbol : tP32
Space group number : 118
Space group symbol : $P\bar{4}n2$
AFLOW prototype command : aflow --proto=A5B3_tP32_118_g2i_aceh
--params=
$a$,$c/a$,$z_{3}$,$x_{4}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$


Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ir I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ir I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Ir II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Ir II} \\ \mathbf{B}_{5} & = & z_{3} \, \mathbf{a}_{3} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ir III} \\ \mathbf{B}_{6} & = & -z_{3} \, \mathbf{a}_{3} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ir III} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ir III} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ir III} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Ga I} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Ga I} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Ga I} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Ga I} \\ \mathbf{B}_{13} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Ir IV} \\ \mathbf{B}_{14} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{5}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Ir IV} \\ \mathbf{B}_{15} & = & \frac{1}{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Ir IV} \\ \mathbf{B}_{16} & = & \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{5}\right)c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Ir IV} \\ \mathbf{B}_{17} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{18} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{19} & = & y_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{20} & = & -y_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{21} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{6}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{6}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga II} \\ \mathbf{B}_{25} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{26} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{27} & = & y_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{28} & = & -y_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{29} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{31} & = & \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{7}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{7}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{Ga III} \\ \end{array} \]

References

  • H. Völlenkle, A. Wittmann, and H. Nowotny, Die Kristallstrukturen von Rh10Ga17 und Ir3Ga5, Monatsh. Chem. 98, 176–183 (1967), doi:10.1007/BF00901115.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A5B3_tP32_118_g2i_aceh --params=

Species:

Running:

Output: