12–phosphotungstic acid [H3PW12O40·5H2O ($H4_{16}$)] Structure : A5B40CD12_cP116_224_cd_e3k_a_k

Picture of Structure; Click for Big Picture
Prototype : (H2.6O)5O40PW12
AFLOW prototype label : A5B40CD12_cP116_224_cd_e3k_a_k
Strukturbericht designation : $H4_{16}$
Pearson symbol : cP116
Space group number : 224
Space group symbol : $Pn\bar{3}m$
AFLOW prototype command : aflow --proto=A5B40CD12_cP116_224_cd_e3k_a_k
--params=
$a$,$x_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$


  • This structure is a bit problematic. (Brown, 1977) offers evidence that the true structure of the hydrated phosphotungstic acid is H3PW12O40·6H2O, rather than 5H2O as deduced by (Keggin, 1934). The presence of the extra water molecule does change the structure somewhat, and Keggin does not give the positions of the hydrogen atoms not attached to water molecules. Ordinarily we would mark this structure obsolete, but it is possible to remove water molecules from this structure and still have a molecule that is recognizably related to the acid, as in H3PW12O40·3H2O. In addition, the lattice constant reported by Keggin is 12.141 Å compared to Brown's 12.506 Å, a change consistent with the loss of a water molecule. Given this, we will not deprecate this five–water molecule structure.
  • (Gottfried, 1937) does not give the positions of the water molecules, and they reverse the $x$ and $z$ coordinates for O–IV and W.
  • This structure is a partially dehydrated form of H3PW12O40·29H2O ($H4_{21}$). Further dehydration produces the H3PW12O40·3H2O structure.
  • The positions of the three hydrogen atoms are unknown. If we follow (Marosi, 2000), then the ‘free’ hydrogens are likely to be bound to some of the water molecules, giving the unusual stoichiometry in the prototype.

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{P} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4c\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{7} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{8} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{9} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{10} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{11} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{12} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(6d\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{20} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O I} \\ \mathbf{B}_{21} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & z_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{26} & = & z_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{29} & = & x_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{31} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{5}\right)a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{34} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{36} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{37} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{38} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{39} & = & -x_{5} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{40} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{41} & = & \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{42} & = & \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{43} & = & -z_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{44} & = & -z_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O II} \\ \mathbf{B}_{45} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + z_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{46} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + z_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{47} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{48} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{49} & = & z_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & z_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{50} & = & z_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & z_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{52} & = & \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{53} & = & x_{6} \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + z_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{54} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + z_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{55} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{56} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{57} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}}-z_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{58} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{59} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{60} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{61} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{62} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{63} & = & -x_{6} \, \mathbf{a}_{1}-z_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-z_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{64} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1}-z_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}}-z_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{65} & = & \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{66} & = & \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{67} & = & -z_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & -z_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{68} & = & -z_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -z_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O III} \\ \mathbf{B}_{69} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + z_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{70} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + z_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{71} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{72} & = & x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{73} & = & z_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{74} & = & z_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{75} & = & \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{76} & = & \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{x}} + x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{77} & = & x_{7} \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{78} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{79} & = & x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{80} & = & \left(\frac{1}{2} - x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{2} + x_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{7}\right)a \, \mathbf{\hat{y}} + x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{81} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}}-z_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{82} & = & -x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-z_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{83} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{84} & = & -x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{85} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{86} & = & -x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{87} & = & -x_{7} \, \mathbf{a}_{1}-z_{7} \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{88} & = & \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{1}-z_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{89} & = & \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{90} & = & \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{7}\right)a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{91} & = & -z_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{7}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{92} & = & -z_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-x_{7} \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}}-x_{7}a \, \mathbf{\hat{y}}-x_{7}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{O IV} \\ \mathbf{B}_{93} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + z_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{94} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}} + z_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{95} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{96} & = & x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{97} & = & z_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & z_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{98} & = & z_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & z_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{99} & = & \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{100} & = & \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{101} & = & x_{8} \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + z_{8}a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{102} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + z_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{103} & = & x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{104} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{8}\right)a \, \mathbf{\hat{y}} + x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{105} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}}-z_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{106} & = & -x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}}-z_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{107} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{108} & = & -x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{109} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{110} & = & -x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{111} & = & -x_{8} \, \mathbf{a}_{1}-z_{8} \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-z_{8}a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{112} & = & \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{1}-z_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{x}}-z_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{113} & = & \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{114} & = & \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{8}\right)a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{115} & = & -z_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{8}\right) \, \mathbf{a}_{3} & = & -z_{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{8}\right)a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \mathbf{B}_{116} & = & -z_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-x_{8} \, \mathbf{a}_{3} & = & -z_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}}-x_{8}a \, \mathbf{\hat{z}} & \left(24k\right) & \mbox{W} \\ \end{array} \]

References

  • J. F. Keggin, The structure and formula of 12–phosphotungstic acid, Proc. Roy. Soc. Lond. A 144, 75–100 (1934), doi:10.1098/rspa.1934.0035.
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • L. Marosi, E. E. Platero, J. Cifre, and C. O. Areán, Thermal dehydration of H3+xPVxM12–xO40·yH2O Keggin type heteropolyacids; formation, thermal stability and structure of the anhydrous acids H3PM12O40, of the corresponding anhydrides PM12O38.5 and of a novel trihydrate H3PW12O40·3H2O, J. Mater. Chem. 10, 1949–1955 (2000), doi:10.1039/b001476l.

Found in

  • G. M. Brown, M.–R. Noe–Spirlet, W. R. Busing, and H. A. Levy, Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403–). The true structure of Keggin's 'pentahydrate' from single–crystal X–ray and neutron diffraction data, Acta Crystallogr. Sect. B Struct. Sci. 33, 1038–1046 (1977), doi:10.1107/S0567740877005330.

Geometry files


Prototype Generator

aflow --proto=A5B40CD12_cP116_224_cd_e3k_a_k --params=

Species:

Running:

Output: