NH4Pb2Br5 ($K3_{4}$) Structure : A5BC2_tI32_140_bl_a_h

Picture of Structure; Click for Big Picture
Prototype : Br5(NH4)Pb2
AFLOW prototype label : A5BC2_tI32_140_bl_a_h
Strukturbericht designation : $K3_{4}$
Pearson symbol : tI32
Space group number : 140
Space group symbol : $I4/mcm$
AFLOW prototype command : aflow --proto=A5BC2_tI32_140_bl_a_h
--params=
$a$,$c/a$,$x_{3}$,$x_{4}$,$z_{4}$


Other compounds with this structure

  • KPb2Br5, RbPb2Br5, KSn2Br5, KSn2I5, InSn2Br5, InSn2I5, CsSn2Br5, TlSn2Br5, RbSn2Br5, InPb2I5, and ISe2Tl5

  • The positions of the hydrogen atoms in the NH4 ions were not determined, so we only provide the positions of the nitrogen atoms (labeled as NH4).

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{NH$_{4}$} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{NH$_{4}$} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Br I} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Br I} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Pb} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Pb} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Pb} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Pb} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{11} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{12} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{13} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{14} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16l\right) & \mbox{Br II} \\ \end{array} \]

References

  • H. M. Powell and H. S. Tasker, The valency angle of bivalent lead: the crystal structure of ammonium, rubidium, and potassium pentabromodiplumbites, J. Chem. Soc. 119–123 (1937), doi:10.1039/JR9370000119.

Found in

  • C. Gottfried, ed., Strukturbericht Band V 1937 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1940).

Geometry files


Prototype Generator

aflow --proto=A5BC2_tI32_140_bl_a_h --params=

Species:

Running:

Output: