ZrTe5 Structure : A5B_oC24_63_c2f_c

Picture of Structure; Click for Big Picture
Prototype : Te5Zr
AFLOW prototype label : A5B_oC24_63_c2f_c
Strukturbericht designation : None
Pearson symbol : oC24
Space group number : 63
Space group symbol : $Cmcm$
AFLOW prototype command : aflow --proto=A5B_oC24_63_c2f_c
--params=
$a$,$b/a$,$c/a$,$y_{1}$,$y_{2}$,$y_{3}$,$z_{3}$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • HfTe5

  • We use the data taken at room temperature.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Te I} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Te I} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Zr} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Zr} \\ \mathbf{B}_{5} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te II} \\ \mathbf{B}_{6} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te II} \\ \mathbf{B}_{7} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te II} \\ \mathbf{B}_{8} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te II} \\ \mathbf{B}_{9} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te III} \\ \mathbf{B}_{10} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te III} \\ \mathbf{B}_{11} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te III} \\ \mathbf{B}_{12} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Te III} \\ \end{array} \]

References

  • H. Fjellvåg and A. Kjekshus, Structural Properties of ZrTe5 and HfTe5 as Seen by Power Diffraction, Solid State Commun. 60, 91–93 (1986), doi:10.1016/0038-1098(86)90536-3.

Geometry files


Prototype Generator

aflow --proto=A5B_oC24_63_c2f_c --params=

Species:

Running:

Output: