K3TlCl6·2H2O ($J3_{1}$) Structure : A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf

Picture of Structure; Click for Big Picture
Prototype : Cl6(H2O)2K3Tl
AFLOW prototype label : A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf
Strukturbericht designation : $J3_{1}$
Pearson symbol : tI168
Space group number : 139
Space group symbol : $I4/mmm$
AFLOW prototype command : aflow --proto=A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf
--params=
$a$,$c/a$,$z_{4}$,$z_{5}$,$z_{7}$,$x_{8}$,$x_{9}$,$x_{10}$,$x_{11}$,$x_{12}$,$y_{12}$,$x_{13}$,$z_{13}$,$x_{14}$,$z_{14}$,$y_{15}$,$z_{15}$,$y_{16}$,$z_{16}$,$y_{17}$,$z_{17}$


  • The positions of the hydrogen atoms in the water molecules were not determined, so we only provide the positions of the oxygen atoms (labeled as H2O).

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Tl I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{K I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{Tl II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4c\right) & \mbox{Tl II} \\ \mathbf{B}_{5} & = & z_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} & = & z_{4}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl I} \\ \mathbf{B}_{6} & = & -z_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} & = & -z_{4}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl I} \\ \mathbf{B}_{7} & = & z_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} & = & z_{5}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{8} & = & -z_{5} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2} & = & -z_{5}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H$_{2}$O I} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Tl III} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Tl III} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Tl III} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Tl III} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Cl II} \\ \mathbf{B}_{14} & = & z_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + z_{7}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Cl II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{1}-z_{7} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Cl II} \\ \mathbf{B}_{16} & = & -z_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{7}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Cl II} \\ \mathbf{B}_{17} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + 2x_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{K II} \\ \mathbf{B}_{18} & = & -x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-2x_{8} \, \mathbf{a}_{3} & = & -x_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{K II} \\ \mathbf{B}_{19} & = & x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} & = & -x_{8}a \, \mathbf{\hat{x}} + x_{8}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{K II} \\ \mathbf{B}_{20} & = & -x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} & = & x_{8}a \, \mathbf{\hat{x}}-x_{8}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{K II} \\ \mathbf{B}_{21} & = & x_{9} \, \mathbf{a}_{2} + x_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} & \left(8i\right) & \mbox{Cl III} \\ \mathbf{B}_{22} & = & -x_{9} \, \mathbf{a}_{2}-x_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} & \left(8i\right) & \mbox{Cl III} \\ \mathbf{B}_{23} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{Cl III} \\ \mathbf{B}_{24} & = & -x_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{y}} & \left(8i\right) & \mbox{Cl III} \\ \mathbf{B}_{25} & = & \frac{1}{2} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{10}\right) \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(8j\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{26} & = & \frac{1}{2} \, \mathbf{a}_{1}-x_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{10}\right) \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(8j\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{27} & = & x_{10} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{10}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + x_{10}a \, \mathbf{\hat{y}} & \left(8j\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{28} & = & -x_{10} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{10}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-x_{10}a \, \mathbf{\hat{y}} & \left(8j\right) & \mbox{H$_{2}$O II} \\ \mathbf{B}_{29} & = & \left(\frac{3}{4} +x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{11}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{11}\right) \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{11}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{30} & = & \left(\frac{3}{4} - x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{11}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{11}\right) \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{11}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{31} & = & \left(\frac{1}{4} +x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} - x_{11}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{11}\right)a \, \mathbf{\hat{x}} + x_{11}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{32} & = & \left(\frac{1}{4} - x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{11}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{11}\right)a \, \mathbf{\hat{x}}-x_{11}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{33} & = & \left(\frac{1}{4} - x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} - x_{11}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{11}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{11}\right)a \, \mathbf{\hat{x}}-x_{11}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{34} & = & \left(\frac{1}{4} +x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{11}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{11}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{11}\right)a \, \mathbf{\hat{x}} + x_{11}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{35} & = & \left(\frac{3}{4} - x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{11}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{11}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{11}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{36} & = & \left(\frac{3}{4} +x_{11}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{11}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{11}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{11}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(16k\right) & \mbox{Cl IV} \\ \mathbf{B}_{37} & = & y_{12} \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2} + \left(x_{12}+y_{12}\right) \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}} + y_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{38} & = & -y_{12} \, \mathbf{a}_{1}-x_{12} \, \mathbf{a}_{2} + \left(-x_{12}-y_{12}\right) \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}}-y_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{39} & = & x_{12} \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2} + \left(x_{12}-y_{12}\right) \, \mathbf{a}_{3} & = & -y_{12}a \, \mathbf{\hat{x}} + x_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{40} & = & -x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + \left(-x_{12}+y_{12}\right) \, \mathbf{a}_{3} & = & y_{12}a \, \mathbf{\hat{x}}-x_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{41} & = & y_{12} \, \mathbf{a}_{1}-x_{12} \, \mathbf{a}_{2} + \left(-x_{12}+y_{12}\right) \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}} + y_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{42} & = & -y_{12} \, \mathbf{a}_{1} + x_{12} \, \mathbf{a}_{2} + \left(x_{12}-y_{12}\right) \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}}-y_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{43} & = & x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + \left(x_{12}+y_{12}\right) \, \mathbf{a}_{3} & = & y_{12}a \, \mathbf{\hat{x}} + x_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{44} & = & -x_{12} \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2} + \left(-x_{12}-y_{12}\right) \, \mathbf{a}_{3} & = & -y_{12}a \, \mathbf{\hat{x}}-x_{12}a \, \mathbf{\hat{y}} & \left(16l\right) & \mbox{Cl V} \\ \mathbf{B}_{45} & = & \left(x_{13}+z_{13}\right) \, \mathbf{a}_{1} + \left(x_{13}+z_{13}\right) \, \mathbf{a}_{2} + 2x_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{46} & = & \left(-x_{13}+z_{13}\right) \, \mathbf{a}_{1} + \left(-x_{13}+z_{13}\right) \, \mathbf{a}_{2}-2x_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{47} & = & \left(x_{13}+z_{13}\right) \, \mathbf{a}_{1} + \left(-x_{13}+z_{13}\right) \, \mathbf{a}_{2} & = & -x_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{48} & = & \left(-x_{13}+z_{13}\right) \, \mathbf{a}_{1} + \left(x_{13}+z_{13}\right) \, \mathbf{a}_{2} & = & x_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}} + z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{49} & = & \left(x_{13}-z_{13}\right) \, \mathbf{a}_{1} + \left(-x_{13}-z_{13}\right) \, \mathbf{a}_{2} & = & -x_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{50} & = & \left(-x_{13}-z_{13}\right) \, \mathbf{a}_{1} + \left(x_{13}-z_{13}\right) \, \mathbf{a}_{2} & = & x_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{51} & = & \left(x_{13}-z_{13}\right) \, \mathbf{a}_{1} + \left(x_{13}-z_{13}\right) \, \mathbf{a}_{2} + 2x_{13} \, \mathbf{a}_{3} & = & x_{13}a \, \mathbf{\hat{x}} + x_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{52} & = & \left(-x_{13}-z_{13}\right) \, \mathbf{a}_{1} + \left(-x_{13}-z_{13}\right) \, \mathbf{a}_{2}-2x_{13} \, \mathbf{a}_{3} & = & -x_{13}a \, \mathbf{\hat{x}}-x_{13}a \, \mathbf{\hat{y}}-z_{13}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VI} \\ \mathbf{B}_{53} & = & \left(x_{14}+z_{14}\right) \, \mathbf{a}_{1} + \left(x_{14}+z_{14}\right) \, \mathbf{a}_{2} + 2x_{14} \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{54} & = & \left(-x_{14}+z_{14}\right) \, \mathbf{a}_{1} + \left(-x_{14}+z_{14}\right) \, \mathbf{a}_{2}-2x_{14} \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{55} & = & \left(x_{14}+z_{14}\right) \, \mathbf{a}_{1} + \left(-x_{14}+z_{14}\right) \, \mathbf{a}_{2} & = & -x_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{56} & = & \left(-x_{14}+z_{14}\right) \, \mathbf{a}_{1} + \left(x_{14}+z_{14}\right) \, \mathbf{a}_{2} & = & x_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}} + z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{57} & = & \left(x_{14}-z_{14}\right) \, \mathbf{a}_{1} + \left(-x_{14}-z_{14}\right) \, \mathbf{a}_{2} & = & -x_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{58} & = & \left(-x_{14}-z_{14}\right) \, \mathbf{a}_{1} + \left(x_{14}-z_{14}\right) \, \mathbf{a}_{2} & = & x_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{59} & = & \left(x_{14}-z_{14}\right) \, \mathbf{a}_{1} + \left(x_{14}-z_{14}\right) \, \mathbf{a}_{2} + 2x_{14} \, \mathbf{a}_{3} & = & x_{14}a \, \mathbf{\hat{x}} + x_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{60} & = & \left(-x_{14}-z_{14}\right) \, \mathbf{a}_{1} + \left(-x_{14}-z_{14}\right) \, \mathbf{a}_{2}-2x_{14} \, \mathbf{a}_{3} & = & -x_{14}a \, \mathbf{\hat{x}}-x_{14}a \, \mathbf{\hat{y}}-z_{14}c \, \mathbf{\hat{z}} & \left(16m\right) & \mbox{Cl VII} \\ \mathbf{B}_{61} & = & \left(y_{15}+z_{15}\right) \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2} + y_{15} \, \mathbf{a}_{3} & = & y_{15}a \, \mathbf{\hat{y}} + z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{62} & = & \left(-y_{15}+z_{15}\right) \, \mathbf{a}_{1} + z_{15} \, \mathbf{a}_{2}-y_{15} \, \mathbf{a}_{3} & = & -y_{15}a \, \mathbf{\hat{y}} + z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{63} & = & z_{15} \, \mathbf{a}_{1} + \left(-y_{15}+z_{15}\right) \, \mathbf{a}_{2}-y_{15} \, \mathbf{a}_{3} & = & -y_{15}a \, \mathbf{\hat{x}} + z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{64} & = & z_{15} \, \mathbf{a}_{1} + \left(y_{15}+z_{15}\right) \, \mathbf{a}_{2} + y_{15} \, \mathbf{a}_{3} & = & y_{15}a \, \mathbf{\hat{x}} + z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{65} & = & \left(y_{15}-z_{15}\right) \, \mathbf{a}_{1}-z_{15} \, \mathbf{a}_{2} + y_{15} \, \mathbf{a}_{3} & = & y_{15}a \, \mathbf{\hat{y}}-z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{66} & = & \left(-y_{15}-z_{15}\right) \, \mathbf{a}_{1}-z_{15} \, \mathbf{a}_{2}-y_{15} \, \mathbf{a}_{3} & = & -y_{15}a \, \mathbf{\hat{y}}-z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{67} & = & -z_{15} \, \mathbf{a}_{1} + \left(y_{15}-z_{15}\right) \, \mathbf{a}_{2} + y_{15} \, \mathbf{a}_{3} & = & y_{15}a \, \mathbf{\hat{x}}-z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{68} & = & -z_{15} \, \mathbf{a}_{1} + \left(-y_{15}-z_{15}\right) \, \mathbf{a}_{2}-y_{15} \, \mathbf{a}_{3} & = & -y_{15}a \, \mathbf{\hat{x}}-z_{15}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O III} \\ \mathbf{B}_{69} & = & \left(y_{16}+z_{16}\right) \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2} + y_{16} \, \mathbf{a}_{3} & = & y_{16}a \, \mathbf{\hat{y}} + z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{70} & = & \left(-y_{16}+z_{16}\right) \, \mathbf{a}_{1} + z_{16} \, \mathbf{a}_{2}-y_{16} \, \mathbf{a}_{3} & = & -y_{16}a \, \mathbf{\hat{y}} + z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{71} & = & z_{16} \, \mathbf{a}_{1} + \left(-y_{16}+z_{16}\right) \, \mathbf{a}_{2}-y_{16} \, \mathbf{a}_{3} & = & -y_{16}a \, \mathbf{\hat{x}} + z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{72} & = & z_{16} \, \mathbf{a}_{1} + \left(y_{16}+z_{16}\right) \, \mathbf{a}_{2} + y_{16} \, \mathbf{a}_{3} & = & y_{16}a \, \mathbf{\hat{x}} + z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{73} & = & \left(y_{16}-z_{16}\right) \, \mathbf{a}_{1}-z_{16} \, \mathbf{a}_{2} + y_{16} \, \mathbf{a}_{3} & = & y_{16}a \, \mathbf{\hat{y}}-z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{74} & = & \left(-y_{16}-z_{16}\right) \, \mathbf{a}_{1}-z_{16} \, \mathbf{a}_{2}-y_{16} \, \mathbf{a}_{3} & = & -y_{16}a \, \mathbf{\hat{y}}-z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{75} & = & -z_{16} \, \mathbf{a}_{1} + \left(y_{16}-z_{16}\right) \, \mathbf{a}_{2} + y_{16} \, \mathbf{a}_{3} & = & y_{16}a \, \mathbf{\hat{x}}-z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{76} & = & -z_{16} \, \mathbf{a}_{1} + \left(-y_{16}-z_{16}\right) \, \mathbf{a}_{2}-y_{16} \, \mathbf{a}_{3} & = & -y_{16}a \, \mathbf{\hat{x}}-z_{16}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K III} \\ \mathbf{B}_{77} & = & \left(y_{17}+z_{17}\right) \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2} + y_{17} \, \mathbf{a}_{3} & = & y_{17}a \, \mathbf{\hat{y}} + z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{78} & = & \left(-y_{17}+z_{17}\right) \, \mathbf{a}_{1} + z_{17} \, \mathbf{a}_{2}-y_{17} \, \mathbf{a}_{3} & = & -y_{17}a \, \mathbf{\hat{y}} + z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{79} & = & z_{17} \, \mathbf{a}_{1} + \left(-y_{17}+z_{17}\right) \, \mathbf{a}_{2}-y_{17} \, \mathbf{a}_{3} & = & -y_{17}a \, \mathbf{\hat{x}} + z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{80} & = & z_{17} \, \mathbf{a}_{1} + \left(y_{17}+z_{17}\right) \, \mathbf{a}_{2} + y_{17} \, \mathbf{a}_{3} & = & y_{17}a \, \mathbf{\hat{x}} + z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{81} & = & \left(y_{17}-z_{17}\right) \, \mathbf{a}_{1}-z_{17} \, \mathbf{a}_{2} + y_{17} \, \mathbf{a}_{3} & = & y_{17}a \, \mathbf{\hat{y}}-z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{82} & = & \left(-y_{17}-z_{17}\right) \, \mathbf{a}_{1}-z_{17} \, \mathbf{a}_{2}-y_{17} \, \mathbf{a}_{3} & = & -y_{17}a \, \mathbf{\hat{y}}-z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{83} & = & -z_{17} \, \mathbf{a}_{1} + \left(y_{17}-z_{17}\right) \, \mathbf{a}_{2} + y_{17} \, \mathbf{a}_{3} & = & y_{17}a \, \mathbf{\hat{x}}-z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \mathbf{B}_{84} & = & -z_{17} \, \mathbf{a}_{1} + \left(-y_{17}-z_{17}\right) \, \mathbf{a}_{2}-y_{17} \, \mathbf{a}_{3} & = & -y_{17}a \, \mathbf{\hat{x}}-z_{17}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{K IV} \\ \end{array} \]

References

  • J. L. Hoard and L. Goldstein, The Structure of Potassium Hexachlorothalliate Dihydrate, J. Chem. Phys. 3, 645–649 (1935), doi:10.1063/1.1749568.

Geometry files


Prototype Generator

aflow --proto=A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf --params=

Species:

Running:

Output: